Entegra EX5000C

Cirrus SR20 and SR22 Multi-Function Display Pilot’s Guide
Document Revision History

<table>
<thead>
<tr>
<th>Date</th>
<th>Revision</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mar. 09, 2004</td>
<td>00</td>
<td>Initial Release</td>
</tr>
<tr>
<td>Mar. 23, 2004</td>
<td>01</td>
<td>Updated per ECO 04-049</td>
</tr>
<tr>
<td>May 28, 2004</td>
<td>02</td>
<td>Updated per ECO 04-100</td>
</tr>
<tr>
<td>Sept. 02, 2004</td>
<td>03</td>
<td>Updated per ECO 04-120</td>
</tr>
<tr>
<td>Sept. 15, 2005</td>
<td>04</td>
<td>Updated per ECO 05-157</td>
</tr>
<tr>
<td>March 1, 2006</td>
<td>05</td>
<td>Updated per ECO 06-040</td>
</tr>
<tr>
<td>Sept. 22, 2006</td>
<td>06</td>
<td>Updated per ECO-06-190</td>
</tr>
</tbody>
</table>

System Configuration

When contacting your dealer or Avidyne technical support, and when logging onto MyAvidyne.com for the first time, please have your EX5000C serial number available:

Entegra EX5000 S/N: ________________________________

This document is applicable to Software Part Number 530-00180-100.

All materials copyrighted including images that represent this software Copyright 2006 Avidyne Corporation. All rights reserved.
This page intentionally blank
Contents

1 **Introduction** ... 1
 About this Guide ... 3
 Notes and Warnings .. 4
 Copyrights and Trademarks .. 6
 AVIDYNE EXCLUSIVE LIMITED WARRANTY/LIMITATIONS ON LIABILITY ... 7
 Using the Entegra EX5000 MFD ... 9

2 **Map Page** ... 11
 Map Page—Controls .. 12
 Map Page Symbols—Terrain and Position 15
 Map Page Symbols—Runways and Flight Plan 19
 Map Orientation Control .. 21
 Errors Displayed on the Map Page 21
 Loss of GPS Input .. 21
 Loss of Heading Input .. 22

3 **Traffic Mode and the Traffic Page** 23
 The Dedicated Traffic Page ... 23
 Traffic Symbols .. 26
 TIS Sensor Status .. 27

4 **TAWS Page (Optional)** ... 28
 TAWS Information .. 28
 TAWS Operation ... 31
 TAWS Reference ... 33
 Auto-Range ... 33
 Simultaneous Alerts .. 33
 Terrain Messages and Error Indications 33

5 **Trip Page** ... 35
 Trip Page Information .. 35

6 **Nearest Page (NRST)** ... 40
 Nearest Page ... 40
 Airport Info Page ... 42

7 **Checklists** ... 43
 Checklist Versions .. 43
 Normal Checklists ... 44
 Checklist Buttons and Knobs .. 46
 Emergency Checklists .. 47
 Performance Checklists .. 50
8 CMax Chart Pages (Optional)................................. 51
 About CMax ... 51
 About Geo-Referenced Charts 52
 CMax Chart Page .. 52
 CMax Views ... 56
 Procedure Chart Views ... 56
 Airport Chart Views ... 58
 CMax Selection Page .. 60
 Selecting an Airport .. 62
 Chart NOTAMs Page .. 64

9 Engine Page... 66
 Cirrus Engine Page ... 67
 Initial Usable Fuel Page ... 73
 Using Lean Assist .. 74
 Leaning for Best Power .. 74
 Leaning for Best Economy 75
 Data Blocks on Map Page .. 77
 Lean Data Block States .. 77
 EMax Total Engine Management 78

10 Aux Pages – Configuring the EX5000 79
 Aux Main Page .. 79
 Airport Filter Setup Page ... 81
 Declutter Setup Page .. 83
 Data Block Edit Page ... 85
 System Time Page ... 87

11 Using Datalink (Optional) 89
 About Datalink Weather .. 89
 Map Page with Datalink Weather 91
 Symbols Displayed using Datalink 92
 Using Datalink without a Traffic Sensor 94
 Trip Page with Datalink Weather 95
 Nearest Page with Datalink Weather 97
 Datalink Coverage .. 98

12 Using the EX5000 Outside the US 100
 Features Available in the US Only 100
 Features Specific to International Flight 100

13 Reference ... 102
 Updating Your Databases ... 103
 Loading NavData (the Navigation Database) 104
 Loading CMax Chart Data 106
14 Software License ... 136
List of Figures

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1</td>
<td>EX5000 Startup Page</td>
<td>2</td>
</tr>
<tr>
<td>1.2</td>
<td>Entegra EX5000 MFD</td>
<td>9</td>
</tr>
<tr>
<td>2.1</td>
<td>Map Page Controls</td>
<td>12</td>
</tr>
<tr>
<td>2.2</td>
<td>Map Page Symbols—Terrain and Position</td>
<td>15</td>
</tr>
<tr>
<td>2.3</td>
<td>Map Page Symbols—Runways and Flight Plan</td>
<td>19</td>
</tr>
<tr>
<td>3.1</td>
<td>Map Page—Traffic Mode</td>
<td>24</td>
</tr>
<tr>
<td>4.1</td>
<td>TAWS Information</td>
<td>28</td>
</tr>
<tr>
<td>4.2</td>
<td>Terrain Caution Condition</td>
<td>31</td>
</tr>
<tr>
<td>4.3</td>
<td>Terrain Warning Condition</td>
<td>32</td>
</tr>
<tr>
<td>5.1</td>
<td>Trip Page Information</td>
<td>35</td>
</tr>
<tr>
<td>6.1</td>
<td>Nearest Page</td>
<td>40</td>
</tr>
<tr>
<td>6.2</td>
<td>Airport Information Page</td>
<td>42</td>
</tr>
<tr>
<td>7.1</td>
<td>Normal Procedure Checklist</td>
<td>44</td>
</tr>
<tr>
<td>7.2</td>
<td>Normal Checklists</td>
<td>45</td>
</tr>
<tr>
<td>7.3</td>
<td>Example Normal Checklist</td>
<td>46</td>
</tr>
<tr>
<td>7.4</td>
<td>Emergency Checklists</td>
<td>47</td>
</tr>
<tr>
<td>8.1</td>
<td>CMax Chart Page (Airport)</td>
<td>53</td>
</tr>
<tr>
<td>8.2</td>
<td>CMax Chart Page (Procedure)</td>
<td>55</td>
</tr>
<tr>
<td>8.3</td>
<td>Procedure Chart views</td>
<td>57</td>
</tr>
<tr>
<td>8.4</td>
<td>Airport Chart Views</td>
<td>58</td>
</tr>
<tr>
<td>8.5</td>
<td>Airport Departure Chart (Night View)</td>
<td>59</td>
</tr>
<tr>
<td>8.6</td>
<td>CMax Selection Page</td>
<td>60</td>
</tr>
<tr>
<td>8.7</td>
<td>Airport Selection Page</td>
<td>62</td>
</tr>
<tr>
<td>8.8</td>
<td>Chart NOTAMs Page</td>
<td>64</td>
</tr>
<tr>
<td>9.1</td>
<td>Engine Main Page</td>
<td>67</td>
</tr>
<tr>
<td>9.2</td>
<td>Cirrus SR22 Initial Usable Fuel Page</td>
<td>73</td>
</tr>
<tr>
<td>9.3</td>
<td>Leaning for Best Power</td>
<td>75</td>
</tr>
<tr>
<td>9.4</td>
<td>Leaning for Best Economy</td>
<td>76</td>
</tr>
<tr>
<td>9.5</td>
<td>Engine Data Blocks—Map Page</td>
<td>77</td>
</tr>
<tr>
<td>10.1</td>
<td>Aux Main Page</td>
<td>79</td>
</tr>
<tr>
<td>10.2</td>
<td>Airport Filter Setup Page</td>
<td>81</td>
</tr>
<tr>
<td>10.3</td>
<td>Declutter Setup Page</td>
<td>83</td>
</tr>
<tr>
<td>10.4</td>
<td>Data Block Edit Page</td>
<td>85</td>
</tr>
<tr>
<td>10.5</td>
<td>System Time Page</td>
<td>87</td>
</tr>
<tr>
<td>11.1</td>
<td>Datalink Weather—Map Page</td>
<td>91</td>
</tr>
<tr>
<td>11.2</td>
<td>Datalink Weather without Traffic Sensors</td>
<td>94</td>
</tr>
<tr>
<td>11.3</td>
<td>Trip Page with Datalink Weather</td>
<td>95</td>
</tr>
<tr>
<td>11.4</td>
<td>Nearest Page with Datalink Weather</td>
<td>97</td>
</tr>
<tr>
<td>11.5</td>
<td>XM WX NEXRAD Coverage Area</td>
<td>98</td>
</tr>
<tr>
<td>11.6</td>
<td>Limits of Datalink Coverage Area</td>
<td>99</td>
</tr>
</tbody>
</table>
List of Tables

Table 2.1 Track Indicator Graphics .. 16
Table 2.2 Obstacle Graphics .. 20
Table 3.1 Traffic Symbols .. 26
Table 4.1 EGPWS Display Color Formats 34
Table 7.1 Checklist Version Matrix .. 43
Table 8.1 Airport Procedure Views ... 57
Table 8.2 Airport Chart Views .. 58
Table 13.1 Sensor Status Block Symbols .. 112
Table 13.2 Broadcast Datalink Sensor Status Block (Optional) ... 113
Table 13.3 Map Symbols – Airports ... 114
Table 13.4 Map Symbols – Navigational Fixes 115
Table 13.5 Map Symbols – Traffic Symbols 115
Table 13.6 Map Symbols – Other .. 115
Table 13.7 Airspace and Airways Lines ... 116
Table 13.8 AIRMET and SIGMET Boundary Lines 116
Table 13.9 Data Block Information ... 117
Table 13.10 Engine Instrument Data Block Information 118
Table 13.11 TAWS Messages ... 119
Table 13.12 Nav Messages .. 121
Table 13.13 Traffic Messages ... 122
Table 13.14 Lightning Messages ... 124
Table 13.15 Engine Messages ... 126
Table 13.16 PFD Messages ... 129
Table 13.17 Broadcast Datalink Messages 130
Table 13.18 Avionics Abbreviations and Definitions 134
This page intentionally blank
1 Introduction

The Entegra EX5000 Multi-Function Display (MFD) provides a moving map view of your flight plan, XM datalink weather, lightning, traffic, navigation data, obstacles, terrain, and CMax™ approach plates with an intuitive user interface. The EX5000 offers the following standard and optional features:

- Engine instruments display.
- Normal and Emergency Checklist display.
- Lightning information display from a WX-500 lightning sensor, if installed.
- Full ARINC-429 databus capability, allowing the EX5000 to display of curved flight paths, procedure turns, and holding patterns from a compatible GPS navigator.
- Traffic information display from Avidyne TAS600 Series, L-3 Skywatch, or Garmin TIS traffic systems.
- Terminal procedure chart display using the CMax™ function.
- Display of weather and flight restriction information when interfaced with an external Broadcast Datalink receiver.
- Display of TAWS terrain information when interfaced with an installed EGPWS system.

Note: Consult the Flight Manual Supplement (FMS) provided with the aircraft and/or sensors prior to operation. The FMS contains information specific to your installation and may contain operating limitations applicable to your aircraft configuration.

On power up, the system performs a brief hardware self-test, then systematically initializes its functions. After the system initializes (about a minute after power-on), the title page, with database currency information, is displayed.
When the EX5000 is ready, the “Press any bezel key to continue” message displays.

The EX5000 Startup Page reports the valid dates for the currently loaded CMax™ and NavData. Check to ensure that you do not have any expired databases before continuing.

For CMax data:

- If the issue date for the next update has passed, the Startup Page displays “Update Available” in white.
- If the current date is more than a week past the issue of the next update, “Update Required” displays in yellow cautionary text.
- If CMax is more than 10 weeks out of date, access to the charts is revoked until new CMax data is loaded.

For NavData, the date range displays if the data is valid; if it is not valid, the word “EXPIRED” and the expiration data display in yellow.

For more information about updating CMax and NavData, see Section 13.1, "Updating Your Databases" on page 103.
1.1 About this Guide

This guide assumes that all available sensors and software options have been installed in your airplane. The page layouts and button descriptions in this guide may differ slightly from what you observe on your EX5000. If your system is configured with a partial set of the available sensors, then some views may differ from this guide.

Note: All images contained within this document, including screenshots and other displays, are for reference use only and are subject to change. The images contained herein may differ slightly from your actual equipment or display.
1.2 Notes and Warnings

Notes and warnings provide guidance for the use of the EX5000. Avidyne strongly suggests that you pay close attention to notes and warnings for your own safety.

For example:

Note: Notes provide useful information about how to use the EX5000.

![Warning symbol] Warnings are prefaced with exclamation points and denote information that can prevent serious injury or death on the part of the user.

The instructions and warnings in this manual are not intended to replace the instructions and warnings for other equipment on your aircraft. It is critical that you as the pilot in command have a complete understanding of the warnings, operating instructions, and limitations for all equipment installed on your aircraft.

![Warning symbol] This manual assumes that the reader is an appropriately licensed pilot. Avidyne strongly recommends that you use the EX5000 only under VFR conditions until you are very familiar with the EX5000.

If you have questions, please contact Avidyne at 800-284-3963 (800-AVIDYNE) or +1-781-402-7400 before operating with the EX5000 under IFR conditions.

![Warning symbol] Before conducting flight operations, be sure to verify that time and date settings on the System Time Setup Page are correct and in UTC. It is critical that the time be set to UTC to provide accurate display of Datalink weather. See Section 10.1, "Aux Main Page" on page 79 for more information.

![Warning symbol] When using the EX5000, be sure to cross-check the data displayed against other data sources for accuracy including other flight deck instruments and charts.
The displayed terrain and obstacle indicators are only advisory. Do not rely on the EX5000 as the sole source of obstacle and terrain avoidance information. Always refer to current aeronautical charts for appropriate terrain and obstacle information.

The EX5000 is not intended to replace your navigation charts or primary navigation aids. Use the EX5000 as a supplement to other navigation sources, to enhance your overall situational awareness. Do not rely on the navigation data in your EX5000 as your sole reference for navigation.

While a properly updated database contains the latest official information available, the manufacturers will not be held responsible for any inaccuracy or omissions therein. **Never** use the terrain displayed on the EX5000 as the only reference for terrain avoidance.

The transmission of datalink weather information means there is some delay from real time until the weather information is displayed on the EX5000. Therefore, use datalink weather information only for strategic route planning. Avoid severe weather areas with a safe margin of distance. Do not use the EX5000 to penetrate severe weather, thunderstorms, cells or lines of cells.

By using Broadcast datalink, you can access weather information made available from sources external to Avidyne Corporation. Avidyne does not control, edit or review the content of such information and is not responsible for such information or the actions or conduct of any company that provides sources of weather data through the Broadcast datalink. Therefore, **ALL WEATHER DATA ARE PROVIDED AS-IS** and neither Avidyne nor its suppliers, subcontractors, or developers (collectively called “Suppliers”) are responsible for: 1) the accuracy, completeness, timeliness, reliability, content, or availability of the weather data or any other datalink information accessed; 2) loss or damage to your records or data; or 3) your use of, or results achieved from, the weather data or any other information accessed.
1.3 Copyrights and Trademarks

Charts shown in the CMax™ section of this manual are copyright Jeppesen Sanderson, Inc.

All trademarks and trade names are the property of their respective owners.

Note: The navigation data for the EX5000 includes copyrighted data compilations owned by Jeppesen Sanderson, Inc., for which Avidyne has been granted a limited, non-exclusive license to use. The copyrighted subject matter may be used only in connection with the ordinary and intended use of the EX5000 as described in this manual. Use for any other purpose, or reproduction or copying of any portion of said copyrighted subject matter, is strictly prohibited.

All materials copyrighted including images that represent this software.

Copyright 2005 Avidyne Corporation. All rights reserved.
AVIDYNE EXCLUSIVE LIMITED WARRANTY/LIMITATIONS ON LIABILITY

1.4 AVIDYNE EXCLUSIVE LIMITED WARRANTY/ LIMITATIONS ON LIABILITY

Avidyne warrants the Product manufactured by it against defects in material and workmanship for a period of twenty-four (24) months from delivery. If Avidyne's Product fails to conform to this warranty, Avidyne, in its sole discretion, will either repair or replace the Product or provide a refund of the purchase price paid for the Product. This warranty is made upon the express conditions that:

(a) Avidyne is given prompt written notice of any claimed non-conformity in the Product, with a reasonable explanation thereof;

(b) The Product is returned to Avidyne or to an Avidyne authorized service facility;

(c) The Product has not been altered in any manner other than as previously authorized by Avidyne in writing; and

(d) Repairs to the Product have not been made by anyone other than Avidyne or an Avidyne authorized service facility.

This warranty does not apply to any Product which is not installed, maintained and operated in accordance with Avidyne's written instructions or which is otherwise misused, including, without limitation, to any Product which is damaged due to improper installation, maintenance or operation, tampering, alteration of serial numbers or other manufacturers data, lightning or other electrical source, or otherwise.

If warranty protection is applicable to the Product, Avidyne will use reasonable efforts to repair or replace Product within ten (10) business days of its receipt of the Product.

Any Product that has been repaired by Avidyne or replaced by Avidyne under this warranty will be subject to remainder of the original warranty term applicable to the repaired or replaced Product or will be warranted under the warranty terms above for ninety days from the date of repair or replacement, whichever period is longer.

THIS EXCLUSIVE LIMITED WARRANTY APPLIES IN LIEU OF AND EXPRESSLY SUPERCEDES AND EXCLUDES ALL OTHER REPRESENTATIONS, AFFIRMATIONS AND/OR WARRANTIES, WHETHER EXPRESS OR IMPLIED, ORAL OR WRITTEN, INCLUDING, WITHOUT LIMITATION, ANY WARRANTY OF MERCHANTABILITY, OF FITNESS FOR A PARTICULAR PURPOSE, OF TITLE AND/OR OF NON-INFRINGEMENT. PURCHASER EXPRESSLY AND KNOWINGLY AGREES THAT NO OTHER REPRESENTATIONS, AFFIRMATIONS OR WARRANTIES, WHETHER EXPRESS OR IMPLIED, ORAL OR WRITTEN, FORM PART OF ANY PURCHASE AND SALE TRANSACTION RELATED TO THE PRODUCT.

AVIDYNE'S (AND ITS AFFILIATES') AND ANY PRODUCT COMPONENT SUPPLIER'S SOLE RESPONSIBILITY AND LIABILITY RELATED TO THE PRODUCT OR ARISING OUT OF OR RELATED TO ITS PURCHASE, SALE, PERFORMANCE, RELIABILITY OR USE ARE LIMITED TO ITS REPAIR OR REPLACEMENT, OR TO A REFUND OF THE PURCHASE PRICE, IN AVIDYNE'S SOLE DISCRETION. IN NO EVENT WILL AVIDYNE (OR ITS AFFILIATES) OR ANY SUPPLIERS OF PRODUCT COMPONENTS BE RESPONSIBLE OR LIABLE FOR ANY OTHER DAMAGE OF ANY NATURE WHATSOEVER, INCLUDING DIRECT, INDIRECT, INCIDENTAL, CONSEQUENTIAL, SPECIAL, LOSS OF USE, LOSS OF REVENUE OR PROFIT, PROPERTY DAMAGE, PERSONAL INJURY, WRONGFUL DEATH, OR OTHER DAMAGE (WHETHER OR NOT AVIDYNE (OR ITS AFFILIATES) WERE NOTIFIED OF THE POSSIBILITY THAT ANY DAMAGE MIGHT BE INCURRED), ARISING OUT OF OR RELATED TO THE PRODUCT, ITS PURCHASE OR SALE, ITS PERFORMANCE OR RELIABILITY, OR THE USE OR INABILITY TO USE THE PRODUCT, FOR ANY REASON, INCLUDING DUE TO ANY PRODUCT DEFECT OR
DEFECTS OR ANY ACTION OR INACTION OF ANY NATURE (INCLUDING CLAIMED OR ACTUAL NEGLIGENCE OR GROSS NEGLIGENCE) BY AVIDyne OR ANY SUPPLIERS OF PRODUCT COMPONENTS. NEITHER THIS EXCLUSIVE LIMITED WARRANTY NOR AVIDyne’S OR ANY PRODUCT COMPONENT SUPPLIER’S RESPONSIBILITY OR LIABILITY WILL IN ANY WAY BE ENLARGED OR OTHERWISE ALTERED DUE TO AVIDyne’S PROVISION OF TECHNICAL SUPPORT OR TRAINING RELATED TO THE PRODUCT. WITHOUT LIMITING THE FOREGOING, NEITHER AVIDyne (NOR ITS AFFILIATES) MAKE ANY REPRESENTATIONS, AFFIRMATIONS OR WARRANTIES REGARDING OR RELATED TO PRODUCTS NOT MANUFACTURED BY AVIDyne OR REGARDING OR RELATED TO THE PERFORMANCE OR RELIABILITY OF ANY SUCH PRODUCT, EITHER ALONE OR WHEN USED WITH ANY PRODUCT MANUFACTURED BY AVIDyne, OR THE SUITABILITY OF ANY SUCH PRODUCT FOR USE WITH ANY PRODUCT MANUFACTURED BY AVIDyne. AVIDyne (AND ITS AFFILIATES) EXPRESSLY DISCLAIM ANY AND ALL REPRESENTATIONS, AFFIRMATIONS AND/OR WARRANTIES REGARDING OR RELATED TO ANY SUCH PRODUCTS. IN NO EVENT WILL AVIDyne (OR ITS AFFILIATES) BE RESPONSIBLE OR LIABLE FOR ANY DAMAGE OF ANY NATURE WHATSOEVER, INCLUDING DIRECT, INDIRECT, INCIDENTAL, CONSEQUENTIAL, SPECIAL, LOSS OF USE, LOSS OF REVENUE OR PROFIT, PROPERTY DAMAGE, PERSONAL INJURY, WRONGFUL DEATH, OR OTHER DAMAGE (WHETHER OR NOT AVIDyne (OR ITS AFFILIATES) WERE NOTIFIED OF THE POSSIBILITY THAT ANY DAMAGE MIGHT BE INCURRED), ARISING OUT OF OR RELATED TO PRODUCTS NOT MANUFACTURED BY AVIDyne, THE PURCHASE OR SALE OF SUCH PRODUCTS, THEIR PERFORMANCE OR RELIABILITY, EITHER ALONE OR WHEN USED WITH ANY PRODUCT MANUFACTURED BY AVIDyne, OR THE SUITABILITY OF ANY SUCH PRODUCT FOR USE WITH ANY PRODUCT MANUFACTURED BY AVIDyne. THIS EXCLUSIVE LIMITED WARRANTY ALSO APPLIES IN LIEU OF AND EXPRESSLY SUPERCEDES AND EXCLUDES ALL OTHER RIGHTS ANY PURCHASER HAS OR MAY HAVE RELATED TO THE PRODUCT AND/OR ARISING OUT OF OR RELATED TO ITS PURCHASE, SALE, PERFORMANCE, RELIABILITY OR USE, EITHER ALONE OR WITH ANY OTHER PRODUCT OR PRODUCTS, WHETHER IN CONTRACT, IN TORT (INCLUDING RIGHTS SOUNDING IN NEGLIGENCE, STRICT LIABILITY AND MISREPRESENTATION), UNDER STATUTE, AT LAW, IN EQUITY, OR OTHERWISE, AND PURCHASER EXPRESSLY AND KNOWINGLY WAIVES ALL SUCH RIGHTS TO THE FULLEST EXTENT PERMITTED BY LAW. PURCHASER ALSO EXPRESSLY AND KNOWINGLY AGREES THAT THE PRODUCT IS NOT A CONSUMER GOOD. THE FOREGOING FOUR PARAGRAPHS DEFINE AND LIMIT AVIDyne’S SOLE RESPONSIBILITY AND LIABILITY AND PURCHASER’S SOLE AND EXCLUSIVE REMEDIES RELATED TO THE PRODUCT.

Some jurisdictions may not allow the exclusion or limitation of warranties or liabilities, in which case the above limitations or exclusions, or some of them, may not apply in those jurisdictions.
1.5 Using the Entegra EX5000 MFD

![Entegra EX5000 MFD](image)

The controls on the bezel of the Entegra EX5000 are placed to allow you quick and intuitive access to the information you need, when you need it.

1) **PhotoCell Light Sensor**—Automatically compensates display brightness for varying lighting conditions.

2) **Brightness Control**—Allows you to override the default display brightness and adjust the brightness level. Press the top of the button to brighten the display; press the bottom to dim it.
3) **Data Port**—Provides a front panel access point for loading database updates.

Note: When removing the rubber cap from the data port, pull the cap gently from the top until it pops out. Make sure the cap is out of the way (but not removed) before plugging anything into the USB port. Do not tug on the tab at the bottom of the cap; this can cause the loss of the protective cap.

4) **Buttons**—Used to select modes or change the display as indicated. Buttons are active when a label appears on the screen adjacent to the key.

5) **Emerg. Checklist**—The *Emerg. Checklist* button is always available to provide quick access to the Emergency Checklists. For more information, see Section 7.4, "Emergency Checklists" on page 47.

6) **Message Bar**—The message bar keeps you informed about critical as well as routine information from the EX5000. When information needs to be conveyed the message bar appears next to the bottom right button.

Note: The message bar displays one message at a time. If more than one message is available, the message bar will display the highest priority message first. Press the ACK button to clear the current message and view those underneath.

7) **Page Control Knob**—The left knob provides quick access to the main EX5000 pages, including the Map Page, Trip Page, and Aux Page, as well as the main pages for any optional features. The current page is highlighted in the Page Bar on the lower left corner of the screen.

8) **Selection & Range Control Knob**—Depending on the page you are viewing, the right knob controls functions such as selecting items on the page or changing the view range. The label on right knob changes as appropriate.
2 Map Page

The Map Page displays your current flight plan overlaying a map of the area over which you are flying. The EX5000 allows you to select the data you want to display on the Map Page.

Turn the Select knob on the Page Bar to Map to display the Map Page.

This section discusses the following topics:

- Map Page—Controls, page 12
- Map Page Symbols—Terrain and Position, page 15
- Map Page Symbols—Runways and Flight Plan, page 19
- Map Orientation Control, page 21
- Errors Displayed on the Map Page, page 21
2.1 Map Page—Controls

Buttons on the left side of the bezel provide access to sensor modes and pages. Buttons on the right side of the bezel access the mapping functions, and control how the Map is viewed.

![Map Page Controls](image)

Figure 2.1 Map Page Controls

Note: For information about the Map Symbols, see Section 13.5, "Map Symbols" on page 114.

1) **Sensor Functions**—Control overlay and modes of available sensors. Buttons only display for the sensors installed in your aircraft:

- **Traffic**—Cycles through traffic sensor modes. See Chapter 3 "Traffic Mode and the Traffic Page," for more information on traffic modes.

- **Lightning**—When both Datalink and a WX-500 lightning sensor are installed, cycles through lightning sensor modes and overlays in the following order; Strike, Cell, Datalink, Display Off. When only one source of lightning data is
installed, only the appropriate modes are available. See the WX-500 Stormscope User’s Guide for further details.

Note: The WX-500 lightning sensor maps thunderstorm activity by monitoring electrical discharge activity within a 200-mile radius of the aircraft. If the display range is set to less than 25NM, only lightning strikes within 25NM are shown. If the display range is set to greater than 25NM, all lightning strikes are shown.

- **Clear WX-500**—Removes current lightning symbols to allow for the refresh of lightning data when using a WX-500 lightning sensor. Does not remove Datalink lightning.

- **WX Rprts**—Controls the type of Datalink weather information displayed on the map, as follows:
 - **All**—Displays graphical METARs, AIRMETs, and SIGMETs.
 - **METARS**—Displays graphical METARs only.
 - **AIRMET**—Displays graphical AIRMETs only.
 - **SIGMET**—Displays graphical SIGMETs only.
 - **DSPLY OFF**—Turns off display of all weather information.

For more information about Datalink functions, see Section 11.2, "Map Page with Datalink Weather" on page 91.

- **Emerg. Checklist**—Opens the Emergency Checklist Page. For more information, see Section 7.4, "Emergency Checklists" on page 47.

2) **Map Functions**—Controls basic look of the map in terms of orientation, number of elements, and base map.

- **View**—Orients the map for either Track/Heading Up or North Up. FORWARD and CENTER views are oriented with Track/Heading Up. North Up orients the map to true North, with the ownship symbol rotated to show track/heading.

- **Declutter**—Controls the four levels of navigation database detail on the Map from most to least:
Map Page

■ **Base Map**—Controls the base map layers:
 ◆ **TERRAIN**—Color-contoured terrain, bodies of water, and political boundaries.
 ◆ **BASE**—Bodies of water and Political boundaries
 ◆ **NONE**—No base map

■ **WX Ovly**—Displays only when Broadcast Datalink is installed. Controls the type of weather information displayed on the map. Press WX Ovly to toggle the display between:
 ◆ Displays Broadcast NEXRAD information on the map. Depending on your Broadcast Datalink service level, the NEXRAD overlay also displays Storm Cell symbols when significant weather formations are determined by the weather provider.
 ◆ **DSPLY OFF** - Removes all NEXRAD data from the map display.

3) **Range Control Knob**—The right knob controls the map’s range and allows you to set the scale from 1NM out to 1500NM. The selectable ranges are, in nautical miles, 1, 2, 5, 10, 15, 20, 30, 40, 50, 75, 100, 150, 200, 300, 400, 500, 750, 1000, and 1500.

Note: The terrain base map is automatically removed and Nav database information is fully decluttered at 750NM and higher ranges.

Note: The Map Page monitors the “health” of the sensors (traffic and lightning) by means of a signal pulse. Map looks for a signal every three seconds from each sensor. If it doesn’t see this signal it assumes the sensor has failed in some way. When this happens, the following occurs on the display:

- Sensor data is removed from the overlay display.
- The word “FAIL” displays in the sensor’s status line in yellow.
- The sensor symbol changes from cyan to yellow (if the sensor was on).

What to do:
Select the Setup Page and perform Self-Test for the applicable sensor.
2.2 Map Page Symbols—Terrain and Position

The EX5000 Map Page depicts your aircraft's position in relation to your flight plan, nearby airports, terrain, traffic, lightning, special use airspace and other navaids.

Note: For details about the Map Symbols, see Section 13.5, "Map Symbols" on page 114.

![Figure 2.2 Map Page Symbols—Terrain and Position](image)

1) **Data Blocks (Left & Right)**—View navigation and engine (when equipped with engine monitor) data in data blocks in the upper corners of the display. For more information, see Section 10.4, "Data Block Edit Page" on page 85.

2) **Heading/Track Indicator**—Three triangles around the compass rose provide actual track, desired track, and heading indications. The H/T Block provides digital readout of the current heading, or actual track. Map orientation is indicated in the triangle to the right of the H/T Block.
3) **Sensor Status Box**—Displays the status of the lightning and traffic sensors installed on the aircraft. See Table 13.1 Sensor Status Block Symbols on page 112 for more information on status box symbols. (Optional Engine Instrument Sensor Status information is described in Table 13.10 Engine Instrument Data Block Information on page 118).

![Warning]

When using Datalink weather, monitor the data age so you are aware of the time elapsed since the last weather update.

4) **Compass Rose/Range Ring**—Displays a 360-degree or 120-degree compass circle or arc and indicates current range setting. The range number is the distance from the airplane symbol to the compass arc.

5) **Terrain Scale**—Shows highest and lowest limits of terrain in displayed area. Legend colors in between these numerics represent terrain elevations. Blue obstacle clearance number shows the top of the highest obstacle, when greater than the highest displayed terrain. Terrain data is not displayed when your aircraft’s latitude is greater than 75 degrees (north or south).

![Warning]

The displayed terrain and obstacle indicators are only advisory. It is dangerous to rely on the EX5000 as the sole source of obstacle and terrain avoidance information. Always refer to current aeronautical charts for appropriate terrain and obstacle information.
6) **METAR Flags**—For each reporting airport, when Datalink is installed and active, a METAR flag provides a quick overview of the weather for that station. The METAR flags are color-coded:

<table>
<thead>
<tr>
<th>METARs</th>
<th>VFR:</th>
<th>> 5 SM & > 3000 ft</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>MVFR:</td>
<td>3-5 SM or 1000-3000 ft</td>
</tr>
<tr>
<td></td>
<td>IFR:</td>
<td>1-3 SM or 500-999 ft</td>
</tr>
<tr>
<td></td>
<td>LIFR:</td>
<td>.5-1 SM or 200-499 ft</td>
</tr>
<tr>
<td></td>
<td><CAT1:</td>
<td><.5 SM or <200 ft</td>
</tr>
</tbody>
</table>

7) **Interstate Highways**—Depicted as brown lines when terrain is selected to be shown. Interstates are labeled in white. (e.g. I-95). Highways are removed from the terrain map when the range is greater than 300NM.

8) **Lightning Indications**—If configured with WX-500 sensor, shows geographically referenced lightning strikes. WX-500 lightning strikes display for three minutes. Lightning display depends on the selected mode, as follows:

 - **Datalink Mode**—If Broadcast Datalink is installed and you have an appropriate XM WX service level, shows as color-coded lightning symbols. Datalink strikes darken in color until they are removed after 15 minutes.

 - **WX-500 Strike Mode**—
 - **WX-500 Cell Mode**—

9) **Special Use Airspace**—The EX5000 uses several different line styles to convey special use and class airspaces. Class B is solid blue line, Class C is solid magenta line. Class D is dashed blue line, MOA, Warning, and Alert areas are solid yellow lines, and restricted and prohibited areas are solid red lines. See Table 13.7 Airspace and Airways Lines on page 116.
10) **Storm Cells**—If storm cells are present, the EX5000 displays the cells along with the cell’s groundspeed, in knots, and direction of travel. If there is a greater than 50% chance of hail, the cell displays with a white background.
2.3 Map Page Symbols—Runways and Flight Plan

When looking at the Map Page in short range, you can see details, such as runway diagrams, that are not available at longer ranges. Note that your flight plan is always shown.

![Map Page Symbols—Runways and Flight Plan](image)

Figure 2.3 Map Page Symbols—Runways and Flight Plan

1) **Ownship Symbol**—Shows the position of your aircraft in relation to the moving map and the selected view.

2) **Airport Runway Diagrams**—Displays runway layouts of nearby airports when looking at the map at a less than 5NM range. As you range in, the scaled runway diagram with heading labels shows your exact location in proximity to the field.

3) **Traffic Indications**—Shows traffic symbol relative to current position and includes relative altitude (when available) with respect to airplane symbol. See your traffic sensor User’s Manual for further details. When available, TIS installations will show a ground track “stinger” for each intruder, indicating the intruder’s track as measured by ground radar. Traffic Symbols are shown in Table 3.1 Traffic Symbols on page 26.
4) **Flight Plan**—Displays the active flight plan from the GPS. The current leg displays in magenta and all remaining legs are shown in white. When you select an approach procedure on the Garmin 430, all approach segments including holds, DME arcs, procedure turns, etc., are shown (when connected via the ARINC 429 bus).

Note: For most GPS units, the EX5000 does not display the active course leg when you are adjusting the desired track in OBS mode. The desired track leg will display after you finish selecting the course and exit the OBS mode of the GPS.

Note: The Garmin GNS 430/GNC 420 does not differentiate curved flight path segments from straight segments when interfaced with the EX5000 via an RS232 interface. Therefore, the EX5000 will connect the beginning and end waypoints of a curved segment, such as a DME arc, with a straight line. Under these circumstances, the straight line must be ignored. Approach procedures should be flown using the GNS 430/GNC 420 navigator’s CDI as the primary reference. Consult your avionics installation facility to determine if your EX5000 is interfaced to the GNS 430/GNC420 via ARINC 429 or RS232.

5) **Obstacles**—The EX5000’s database contains towers and other obstacles greater than 200 feet AGL. Obstacles can be displayed with MSL altitude label.

Note: For example, a 2000 foot tall TV tower located in Denver (elevation 5300 feet MSL) will be depicted as being at 7300 feet MSL.

<table>
<thead>
<tr>
<th>Table 2.2 Obstacle Graphics</th>
</tr>
</thead>
<tbody>
<tr>
<td>Graphic</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>
2.4 Map Orientation Control

The Map View button allows you to control the orientation of the map and sensor data displayed on the EX5000. EX5000 traffic and lightning sensor symbols are positioned relative to the aircraft nose. When the Map View is North-Up you need to pay more attention to locate traffic outside the aircraft. Set Map View to Center or Forward to display this data consistent with typical dedicated traffic and lightning sensor displays.

2.5 Errors Displayed on the Map Page

In general, the following errors are externally generated, but you may notice them on the Map or other pages on the EX5000.

2.5.1 Loss of GPS Input

Loss of primary GPS is annunciated in a number of ways on your EX5000.

- The “Nav Source not communicating” message displays.
- The aircraft symbol is removed.
- There is no heading information displayed (if GPS is lost, no heading is displayed regardless of heading source).
- The desired track icon is removed from the compass rose.
- There is no groundspeed information displayed.

The EX5000 continues to provide Datalink weather for your flight at its last known position. If the primary GPS fails during flight and you have a second GPS connected to the EX5000, you may switch your GPS input to the backup source by pressing the Nav Src button on the Aux Page.
2.5.2 Loss of Heading Input

The source for heading data on your aircraft is dependent upon the particular complement of equipment you have installed in your aircraft. Loss of heading is typically associated with the failure of one of the following:

- The WX-500 Stormscope system (if installed and a heading source is connected to the WX-500).
- The Skywatch system (if installed and a heading source is connected to the TAS).
- A problem with heading from a Primary Flight Display (PFD).
- The GPS (This would be a pass through of the heading from another source, such as an Avidyne PFD. The GPS does not determine heading).

If an installed heading source becomes unavailable or invalid, the EX5000 will automatically switch to using GPS track for map alignment.

If the track source also becomes unavailable or invalid, the following conditions will occur:

- All traffic and lightning data is removed from the display.
- The aircraft symbol is replaced by a direction-less symbol (a white + symbol).
- The compass labels (N, S, E, and W) are removed from the display.
- The map and flight plan data will continue to be displayed.
- The map orientation annunciation is removed from the display
- The heading/track indicator will display a series of dashes (“---”)
- The map is oriented True North Up.

What to do:

- Have the avionics wiring inspected.

When heading/track is restored, Map will resume normal operations.
3 Traffic Mode and the Traffic Page

When a Traffic Advisory (TA) is reported from the traffic sensor, the EX5000 displays a traffic alert message in the Message Bar. Pressing the ACK button next to the message acknowledges the traffic alert and displays the dedicated traffic page that provides you maximum traffic situational awareness.

It is dangerous to rely on the EX5000 as your sole source of data for collision avoidance. Traffic information is provided as an aid to visually acquiring traffic. Maneuver your aircraft based only on ATC guidance or positive acquisition of conflicting traffic. It is your duty as pilot in command to see and avoid.

Notes: The intruder track information provided by TIS traffic systems is only accurate to within 45° of true intruder track. Take this into account when visually acquiring the reported traffic.

Keep in mind that intruder traffic can maneuver at any time, and the current intruder track direction does not guarantee the intruder will continue along that track.

For traffic sensors without track information (e.g. TAS), traffic symbols are shown without the “stinger”.

3.1 The Dedicated Traffic Page

The dedicated Traffic Page is a specially configured Map page with the following settings:

- **View**—Center, with heading (or track) up
- **Range**—5 NM
- **Base Map**—No terrain or political boundaries
- **Declutter**—No symbol or airspace depictions
- **Lightning**—Not displayed
- **Flight Plan**—Displayed
- **Datalink Weather**—Not displayed.
Up to 5 non-bearing intruders (traffic threats reported by the traffic sensor without valid bearing) are listed below the airplane symbol.

Acknowledging the TA message from the Traffic mode removes it from the message bar, allowing other messages to be displayed. The TA message is automatically removed when the threat is reduced or the intruder is no longer present.

Figure 3.1 Map Page—Traffic Mode

1) **Exit Traffic**—Restores the Map Page to the previous settings. If the Map Page is restored prior to acknowledging a TA, the message will remain displayed and acknowledging it will once again bring up the dedicated Traffic Page.

Note: Traffic limitations and operational ranges depend on the installed traffic sensor. For TAS or TCAD sensors, see the corresponding sensor Pilot Guide. For TIS sensors, see Section 1-3-5 of the Aeronautical Information Manual.

The available Traffic button modes are listed below. For more information on specific traffic sensor modes, consult the user documentation for your traffic sensor.
● **Avidyne TAS600 series (including 9900BX), Skywatch, and Bendix/King** —Traffic modes are ABOVE, NORMAL, UNLIMTD, BELOW, and DSPLY OFF.

● **TCAD 9900B**—Traffic modes are GROUND, TERMINAL, STANDARD, ENROUTE, UNLIMITED, APPROACH, and DSPLY OFF. Note that some TCAD installations will support automatic mode switching by the TCAD unit. The current mode is always reported on the EX5000 screen.

● **TIS**—Traffic modes are DSPLY ON and DSPLY OFF.
3.2 Traffic Symbols

On the EX5000, aircraft traffic detected by a Traffic Sensor (referred to as intruders) are displayed as one of three symbols. If a compatible TIS system is installed and intruder track information is available, the appropriate symbol will be shown with a “stinger” which depicts the current ground track of the intruder, as detected by ATC radar systems. The traffic symbols are:

Table 3.1 Traffic Symbols

<table>
<thead>
<tr>
<th>Non-TIS Symbol</th>
<th>TIS Symbol</th>
<th>Type</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Traffic Alert (TA)</td>
<td>Traffic within the alert zone defined by the traffic sensor.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Proximate Traffic</td>
<td>Traffic close to your position but not within an alert zone.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Other Traffic</td>
<td>Traffic detected by the traffic sensor, but determined not to be a current threat.</td>
</tr>
</tbody>
</table>

Traffic sensors do not provide any traffic awareness data for aircraft without operating transponders. Therefore, these aircraft will not display on the EX5000. It is your responsibility to see and avoid all other traffic and to maintain appropriate separation.

Traffic alert information is displayed in the message bar as in the example above.

1) Relative bearing of target.
2) Range in nautical miles.
3) Relative altitude of traffic to your current aircraft altitude. For example, -200 would be 200 feet below your aircraft, as reported by the traffic sensor.
Intruders are displayed as they are received from and identified by the sensor. The threat level assigned to an intruder is specified by the sensor when it transmits the intruder data. Threat data, range, bearing, altitude, ID and closing direction are defined by the sensor and the type of system.

If the intruder altitude and vertical speed are known, they are displayed alongside the intruder symbol. The number immediately above or below the traffic symbol indicates the relative altitude of the intruder to your position, in hundreds of feet. An arrow next to an intruder symbol shows the direction of any vertical movement of the intruder that is in excess of 400 feet per minute.

For example, in the Traffic Alert example shown in Table 3.1, the intruder is 500 feet below and is climbing. In addition, the TIS example shows the intruder is moving along a track approximately 45 degrees to the right of our current map alignment. (i.e. if the EX5000 map is set for North Up, the intruder is flying a track somewhere between 023 and 067. This is the accuracy limit of the intruder track data.)

3.3 TIS Sensor Status

The TIS interface is only available on the EX5000. For TIS installations, the following may be reported in the Traffic status block on the EX5000 Map Page:

- **OPER**—The TIS sensor is operating normally.
- **CST 00:00**—The TIS sensor has temporarily lost the information feed from ground-based radar and is in “coast” mode. The EX5000 will continue to display the traffic last received, while the CST timer will count the seconds since the last valid data.
- **RMV 00:00**—After 12 seconds of coasting, the TIS sensor will remove the traffic display and display RMV, and continue to count the time since the last valid data.
- **UNAVAIL**—More than 60 seconds have passed since valid data was received, or TIS data is not available at the current aircraft location.
- **SBY**—The TIS sensor is in standby mode.
- **DATA FAIL**—The TIS sensor has reported an internal fault. Traffic information will be removed from display.
4 TAWS Page (Optional)

If your EX5000 system has been configured with a Terrain Awareness and Warning System (TAWS), turn the Page knob to “TAWS” to view the TAWS Page.

Any display of yellow or red on the TAWS page indicates an imminent terrain or obstacle hazard.

The TAWS display on the EX5000 is an optional component of any TAWS-B installation, and is intended only to enhance situational awareness. All terrain avoidance maneuvering must be predicated on indications from the installed TAWS system, and not from the EX5000.

4.1 TAWS Information

Figure 4.1 TAWS Information
1) **Range Annunciation**—The range number indicates the currently selected range as selected by the Range knob. The supported ranges are 2.5, 5, 10, 20, 40, 80, 160, 240, and 320 nm. At start up, the EX5000 TAWS range defaults to 80nm.

2) **Display Orientation**—This annunciation describes the orientation of the TAWS display. If heading is available to the EGPWS, the TAWS display orientation is “heading up”, with the aircraft's heading to the top of the display. HDG ### MAG displays, where ### is the aircraft's magnetic heading as reported by the EGPWS.

If Heading is lost or not available to the EGPWS, the EGPWS may use magnetic ground track instead, and TRK ### MAG displays, where ### is the aircraft's magnetic ground track.

In certain locales, such as near the magnetic poles, magnetic variation may become unreliable. The Display Orientation will switch to the “true” value, for example, HDG ### TRU or TRK ### TRU.

If neither heading nor ground track is available, the terrain will be replaced by the cyan message “TAWS Display Unavailable”.

3) **Scan Marker**—The marker is a short white line that moves across the top of the display area. It indicates the current position of the scan.

4) **Peaks Mode Elevations**—Appears only when your EGPWS has been installed with the “Peaks Mode” option selected. The two numerical values correspond to the highest terrain/obstacle elevation displayed and the bottom elevation of the lowest color band displayed. Elevations are expressed in feet above sea level, with the hundreds digit displayed half size, i.e. 108 is equal to 10,800 feet and 010 is equal to 1,000 feet.

If there is no appreciable difference in elevation (flat terrain) only the highest value displays. The color of each elevation value is the same as the color of the terrain display containing that elevation (green, yellow, or red). During a terrain alert, threatening terrain will be displayed as bright red and/or bright yellow. The elevation value colors are not modified in this case, but continue to correspond to the colors that would appear in the TAWS display under normal circumstances, and represent the actual elevation of the terrain relative to the aircraft.
5) **Range Rings**—Range rings are shown as solid white lines. The distance to the outer ring is shown in the Range annunciation. The inner ring is one half the range of the outer ring.

6) **Terrain Data**—Terrain data is depicted as color areas representing various elevations relative to your aircraft and potential hazard situations.

7) **Azimuth Lines**—When pressed, labeled azimuth lines appear every 20 degrees. Press it again to remove the azimuth lines.

8) **Geometric Altitude**—Presents current geometric altitude as calculated by the EGPWS. The geometric altitude is calculated via GPS altitude reporting.

9) **Range Knob**—Changes the TAWS display range. During the short delay between the request for a new range (by turning the range knob) and the actual display of data at the new range, a “Requested Range Annunciation” displays. This is a dashed box immediately below the Range Annunciation, containing the new range that has been requested. If too many TAWS range requests are made before the EGPWS completes a full scan, the display may temporarily say “TAWS Failed”, but will resume normal operation within a few seconds.

Note: The EX5000 displays TAWS data that is received from the TAWS sensor. The EX5000 does not generate its own TAWS data.

Warning:

MSL-G is based on an internally calculated geometric altitude by the TAWS. Geometric altitude is the height above MSL derived from GPS. It represents the aircraft’s calculated height above MSL and serves as the reference altitude for color-coding of the TAWS terrain display and as the input to the TAWS look-ahead algorithm. Because it is derived from GPS altitude, this reference altitude will often differ from corrected barometric altitude. The geometric altitude, which may be in error by 100 feet or more, is not to be used for navigation. It is presented to provide the crew with additional situational awareness of true height above sea level upon which TAWS terrain alerting and display is based.
4.2 TAWS Operation

Terrain and obstacle alerts are the most critical situations displayed by TAWS. There are two levels of alerts:

- **Caution**—Possible terrain or obstacle conflict within 40-60 seconds.
- **Warning**—Possible terrain or obstacle conflict within 30 seconds.

Note: At the maximum range settings of 240nm and 320nm, terrain data for portions of the display beyond 320 nm may not be available. At these range settings, portions of the display representing distances greater than 320 nm may be black even though significant terrain may be present. The occasional loss of this display data occurs at the extreme limits of the EGPWS, but does not compromise safety or terrain awareness.

When a caution alert is triggered, the terrain or obstacle that caused the alert displays in bright yellow, as shown below. In addition, a message describing the nature of the alert is presented in the message bar.

![Figure 4.2 Terrain Caution Condition](image-url)
When a warning alert is triggered, the terrain or obstacle that caused the alert displays in bright red. In addition, a message describing the nature of the alert is presented in the message bar.

Figure 4.3 Terrain Warning Condition

When a caution or warning alert is active, the display image surrounding the target is enlarged somewhat to allow the terrain or obstacle to be better seen on the display. See Table 13.8 TAWS Messages on page 119 for a complete listing of TAWS messages.

If a terrain or obstacle alert occurs while a page other than TAWS Display is being displayed, a terrain or obstacle alert message displays in the Message Bar. When you acknowledge this message, the EX5000 automatically switches to the TAWS Display Page. The message bar is removed from the display when the EGPWS is no longer in alert status, or if you acknowledge the message from the TAWS Page.
4.3 TAWS Reference

4.3.1 Auto-Range
If the EGPWS has been installed with the “auto range” option selected, the terrain display range is automatically set to 10nm whenever a terrain or obstacle alert takes place, overriding the current range selection. To remind you that the range has been automatically changed, the text “Auto” is added in the range annunciation. Manual range control is not disabled by auto-range. You can reset the range to any desired value.

4.3.2 Simultaneous Alerts
If a terrain or obstacle alert and Traffic Advisory (TA) are issued at the same time, TAWS will have priority, and the terrain or obstacle alert message will be presented in the Message Bar. When you acknowledges the alert, the EX5000 switches to the TAWS Display Page. After you acknowledge the TAWS message from the TAWS Page, the TA is shown in the Message Bar. If you then acknowledge the TA, the dedicated Traffic Page, discussed in Section 3.1, "The Dedicated Traffic Page" on page 23, will pop up.

If a TA occurs while a terrain or obstacle alert is in progress and the TAWS Display Page is being displayed, the EX5000 will remain in TAWS Display and the TA message will appear in the Message Bar. Acknowledging the TA message displays the dedicated Traffic Page.

4.3.3 Terrain Messages and Error Indications
The TAWS display may present messages in the Message Bar. Press the ACK button to acknowledge TAWS Page messages and remove them from the message bar. Large text annunciations will remain. See Table 13.8 TAWS Messages on page 119 for a listing of possible TAWS messages.

If the TAWS Page is accessed immediately after you turn on the EGPWS, the system may still be initializing and the TAWS Page will display the text “TAWS Initializing” rather than the expected terrain. The EGPWS and TAWS Page will begin normal operation when initialization is complete.
Table 4.1 EGPWS Display Color Formats

<table>
<thead>
<tr>
<th>Color</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>Solid Red</td>
<td>Terrain/Obstacle threat area, a warning is generated.</td>
</tr>
<tr>
<td>Solid Yellow</td>
<td>Terrain/Obstacle threat area, a caution is generated.</td>
</tr>
<tr>
<td>50% Red Dots</td>
<td>Terrain/Obstacle that is more than 2,000 feet above aircraft.</td>
</tr>
<tr>
<td>50% Yellow Dots</td>
<td>Terrain/Obstacle that is between 1,000 and 2,000 feet above aircraft.</td>
</tr>
<tr>
<td>25% Yellow Dots</td>
<td>Terrain/Obstacle that is 500 (250 with gear down) feet below to 1,000 feet above aircraft.</td>
</tr>
<tr>
<td>Solid Green</td>
<td>Peaks mode only. Shown only when no Red or Yellow Terrain/Obstacle areas are within range on the display. Highest Terrain/Obstacle not within 500 (250 with gear down) feet of aircraft altitude.</td>
</tr>
<tr>
<td>50% Green Dots</td>
<td>Terrain/Obstacle that is 500 (250 with gear down) feet below to 1,000 feet below aircraft altitude.</td>
</tr>
<tr>
<td>50% Green Dots</td>
<td>Peaks mode only. Terrain/Obstacle that is the middle elevation band when there is no Red or Yellow terrain areas within range on the display.</td>
</tr>
<tr>
<td>16% Green Dots</td>
<td>Terrain/Obstacle that is 1,000 to 2,000 feet below aircraft altitude.</td>
</tr>
<tr>
<td>16% Green Dots</td>
<td>Peaks mode only. Terrain/Obstacle that is the lower elevation band when there is no Red or Yellow terrain areas within range on the display.</td>
</tr>
<tr>
<td>Black</td>
<td>No significant terrain/obstacle.</td>
</tr>
<tr>
<td>16% Blue</td>
<td>Peaks mode only. Water at sea level elevation (0 feet MSL).</td>
</tr>
<tr>
<td>Magenta Dots</td>
<td>Unknown terrain. No terrain data in the data base for the magenta area shown.</td>
</tr>
</tbody>
</table>
5 Trip Page

The Trip Page is continuously updated during flight. The distance and the time values are updated with each new positive fix from the GPS. The route legs advance with each waypoint message. Turn the Page knob to bring up the Trip Page, which shows the remaining legs in the current flight plan and other data being received by the EX5000 from the GPS.

If the entire flight plan does not fit on the screen, an ellipsis (…) displays in the next to last line. The destination line is always displayed. All flight plans are from the GPS. A “No Flightplan Available” message displays if there is no flight plan entered or if the GPS has failed.

5.1 Trip Page Information

![Figure 5.1 Trip Page Information](image)

1) Current ground speed and track—As reported by your GPS Navigator.
2) **Course Deviation Indicator (CDI)**—Shows lateral distance (Crosstrack deviation) from desired course, providing continuous navigation reference when viewing the Trip Page.

3) **Time**—Local and UTC time in HH:MM:SS using a 24-hour clock format.

4) **Flight Plan Waypoints**—Flight Plan information from your GPS. Active waypoint is shown in magenta.

- For Flight Plan waypoints, the following data displays:
 - **WPT**—Waypoint identifier as received from the GPS.
 - **BRG**—Bearing to current waypoint.
 - **DTK**—Desired track to waypoint.
 - **NM**—Cumulative great circle distance of each flight plan leg.
 - **ETE**—Cumulative estimated time enroute to waypoint in H:MM format for each flight plan leg at current ground speed.
 - **ETA**—Estimated time of arrival to waypoint in HH:MM formatted for local time.
 - **Fuel (Gals)**—Available with Engine and Fuel Monitor function. Displays remaining fuel at each waypoint.
 - **Chart Icon**—Indicates that an Instrument Procedure chart is available for the associated airport. An “I” on the icon indicates that at least one ILS approach chart is available for the associated airport, on the CMax Chart page. Chart icons only display for those airports for which you have JeppView subscription coverage. For more information, see Section 8.1, "About CMax" on page 51.

- Intermediate waypoints are shown with the prefix Wx:. The Trip Page includes distance (NM), waypoint name, and METAR, if available.

 Intermediate waypoints are determined by your current flight plan. The EX5000 adds intermediate waypoints along your flight path to provide weather information between flight plan waypoints for longer flight plan legs. This can provide you with a fuller picture of enroute conditions.
5) **METAR Symbol**—A METAR report is shown for each flightplan waypoint that uses the same METAR condition symbols as described in Section 2.2, "Map Page Symbols—Terrain and Position" on page 15.

6) **Trip Display Area**—Displays the information that you select with the Display button for the selected waypoint, when available.

7) **Destination Airport Info**—Provides quick access to airport information for the destination airport, when available.

8) **Display**—Controls the display shown in the lower portion of the screen. The selections are:

 - **METAR**—Displays the decoded text METAR for the selected waypoint, when available.
 - **Legend**—If Broadcast Datalink is installed, shows the types of data used in graphical METAR and NEXRAD displays.

 ![NEXRAD and METAR symbols]

 - **Broadcast Status**—Displays satellite, signal, and serial number information for the Broadcast (XM WX Satellite Weather) Datalink system. Also displays the elapsed time since reception of the various types of weather data.

 ![Broadcast status table]

<table>
<thead>
<tr>
<th>Time Since Reception</th>
<th>Satellite Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>NEXRAD</td>
<td>Service Level: Aviator</td>
</tr>
<tr>
<td>METARs</td>
<td>XM Serial Number: 38M320CN</td>
</tr>
<tr>
<td>AIRMETs</td>
<td>Signal Quality: good</td>
</tr>
<tr>
<td>SIGMETs</td>
<td>Time min.</td>
</tr>
<tr>
<td>TFRs</td>
<td>1 min.</td>
</tr>
<tr>
<td>Lightning</td>
<td>8 min.</td>
</tr>
<tr>
<td>TAFs</td>
<td>8 min.</td>
</tr>
<tr>
<td>Winds Alott</td>
<td>6 min.</td>
</tr>
<tr>
<td>Storm Cells</td>
<td>3 min.</td>
</tr>
<tr>
<td>Freezing Level</td>
<td>9 min.</td>
</tr>
</tbody>
</table>
Winds Aloft and Freezing Level—Displays Winds Aloft and Freezing Level data from Broadcast Datalink, if available. The Winds Aloft direction is measured from true (not magnetic) North. Winds are interpolated for each Trip Page waypoint and are based on a computer forecast model that is updated hourly.

If wind data for a particular flight level has not been received, the text Not Available displays. If the EX5000 has received wind data, but the value is undefined for a particular level, the wind value displays as dashes. This can happen for a number of reasons; one example is when an airport is at a higher altitude than the data level (such as Denver).

The Freezing Level forecast displays the expected altitude of the freezing level for the waypoint.

<table>
<thead>
<tr>
<th>Winds Aloft for KCRQ</th>
</tr>
</thead>
<tbody>
<tr>
<td>FL030 ---</td>
</tr>
<tr>
<td>FL060 125° at 9 kts</td>
</tr>
<tr>
<td>FL090 129° at 7 kts</td>
</tr>
<tr>
<td>FL120 102° at 10 kts</td>
</tr>
<tr>
<td>FL150 102° at 18 kts</td>
</tr>
<tr>
<td>FL180 95° at 23 kts</td>
</tr>
<tr>
<td>FL210 91° at 27 kts</td>
</tr>
</tbody>
</table>

Freezing Level Forecast at 13100 ft

TAFs—The EX5000 provides text Terminal Aerodrome Forecasts (TAF) from the National Weather Service via Broadcast Datalink, if available. TAFs are not decoded.

Terminal Aerodrome Forecast (TAF) for KCRQ

100527Z 100606 28005KT P6SM SCT003
TEMPO 0709 1/2SM FG BKN002
FM0900 13005KT 1/2SM FG BKN001
TEMPO 1014 1/4SM FG VV001
FM1600 15005KT 3SM HZ SCT003
FM1800 24008KT P6SM SKC
FM0200 04005KT P6SM SKC

Note: Winds Aloft and TAFs are only available with certain XM WX packages. See the XM WX documentation for more information.
9) **Chart**—If CMax approach charts are installed and available, provides a quick jump to the Chart Page with the highlighted airport pre-selected. For information about CMax, see Chapter 8 "CMax Chart Pages (Optional).

10) **Select Knob**—Use the right knob to move the cursor over the desired waypoint in the flight plan, which selects the plain-text METAR to be displayed along the bottom half of the screen.

Garmin GNS400/500-series users: When the EX5000 is interfaced to a Garmin GNS400/500-series GPS via RS-232, the GPS may send duplicate waypoints while in approach mode. These duplicate waypoints may affect the distance and time readings on the Trip Page. Use the GPS as the primary source of navigation information for approach procedures. Consult your avionics installation facility to determine if your EX5000 is interfaced to the Garmin GNS-430 via ARINC 429 or RS-232.
6 Nearest Page (NRST)

The Nearest Page displays the nearest airports within 100NM of your present position or the nearest airports to your destination. Through the buttons, you can access detailed information about each airport. The buttons also allow you to view the nearest VORs, NDBs, Intersections, and Obstacles.

6.1 Nearest Page

Figure 6.1 Nearest Page

1) Airport details—By default, displays the following details about the airports nearest to your current location:

- **METAR and Chart Symbols**—Waypoints with METAR reporting stations display a color-coded METAR flag when Datalink is active. If CMax approach charts are installed, a chart icon displays next to any METAR reporting station for which an Instrument Procedure chart is available. An “I” on the icon indicates that at least one ILS approach chart is available. See Chart, below, for more information.

- **ID**—Airport identifier of the airport.
■ **BRG**—Bearing to the airport.
■ **NM**—Distance to the airport.
■ **Freq**—Radio frequency to contact this airport.
■ **Name**—Airport common name.

2) **METAR Conditions**— Displays the decoded text METAR for the selected airport when Broadcast Datalink is enabled and a METAR is available.

3) **Airport Info**—Provides quick access to airport information for the airport highlighted. Airport Info only appears when viewing the Airports Nearest to Position and Airports Nearest to Destination. Airport Info displays a page similar to Figure 6.2.

4) **TYPE**—Cycles through the various Nearest data types in the following order:

■ **PPOS APT (Airports Nearest Present Position)**—Graphical METARs, airport identifier, bearing, distance from the aircraft present position, frequency, and airport name.

■ **DEST APT (Airports Nearest Destination)**—Graphical METARs, airport identifier, bearing, distance from the destination airport, frequency, and airport name.

■ **VORs**—Identifier, bearing, distance, frequency, and name.

■ **NDBs**—Identifier, bearing, distance, frequency, and name.

■ **Intersections**—Identifier, bearing, and distance.

■ **Obstacles**—MSL (and AGL) height, bearing, and distance.

5) **FILTER**—Press to see all airport types (SHOW ALL) or only the airport types as defined on the Airport Filter Page (ON) (see Section Figure 10.2, “Airport Filter Setup Page” on page 81). Filter is only visible on the Nearest Airport Pages.

6) **Chart**—If CMax charts are installed and you select an airport that has a chart icon, the Chart button appears, which provides a quick jump to the selected approach charts. For information about CMax, see Chapter 8 “CMax Chart Pages (Optional).”

7) **Select Knob**—Use the right knob to move the cursor up or down to highlight a specific airport or other data type.
6.2 Airport Info Page

When you press Airport Info from the Nearest Page, the Airport Information Page displays for the selected Airport, as shown:

![Figure 6.2 Airport Information Page](image)

1) **Back to Nearest**—Returns to the Nearest Page.

2) **Step and Jump Knobs**—If the communications frequencies list is long enough so that it does not fit on a single page, the Step and Jump labels appear on the left and right knobs:

 - **Step**—Scrolls the page one line.
 - **Jump**—Scrolls an entire page (or to the end of the list).
7 Checklists

Checklists provide step-by-step instructions to help you perform common, and uncommon, tasks relating to your aircraft. There are two ways to access the Checklists:

- For normal Checklists, turn the Page Knob to Chklist. As described in Section 7.2, "Normal Checklists" on page 44, the left-hand buttons display the types of available checklists.
- For Emergency Checklists, press the Emerg. Chklist button available on every EX5000 Page. This will take you directly to the Emergency Checklist section, described in Section 7.4, "Emergency Checklists" on page 47.

This section discusses the following topics:

- Checklist Versions, page 43
- Normal Checklists, page 44
- Checklist Buttons and Knobs, page 46
- Emergency Checklists, page 47
- Performance Checklists, page 50

7.1 Checklist Versions

The EX5000 startup screen and the Aux Main Page display the currently loaded checklist version. The following checklists are supported by software part number 530-00180-100:

Table 7.1 Checklist Version Matrix

<table>
<thead>
<tr>
<th>EX5000 Checklist Version</th>
<th>Aircraft and S/N Range</th>
<th>Cirrus Checklist PIN</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.04</td>
<td>SR20 S/N 1005-1147</td>
<td>11934-001 Change: A5</td>
</tr>
<tr>
<td></td>
<td>SR20 S/N 1148-1267</td>
<td>11934-002 Reissue: A2</td>
</tr>
<tr>
<td></td>
<td>SR20 All Electric S/N 1268 and later</td>
<td>11934-003 Reissue: A2</td>
</tr>
<tr>
<td></td>
<td>SR22 All</td>
<td>13772-001 Reissue: A2</td>
</tr>
</tbody>
</table>
Checklists

Confirm that the checklist version is appropriate for your aircraft.

Note: This reflects the current checklist data at the time of software release. The aircraft manufacturer may have loaded new checklist data since this time. Check with your aircraft manufacturer for more information.

7.2 Normal Checklists

![Figure 7.1 Normal Procedure Checklist](image)

Figure 7.1 Normal Procedure Checklist

1) **Checklist Types**—Provides access to the top-level Normal checklists by phase of flight:

- Before Takeoff
- In Flight and Landing
2) **Available Checklists Menu**—Lists the checklists within each type. Press *Show Checklist* to view the highlighted checklist. Normal Checklists will automatically sequence in order as checked off.

3) **Perf. Data**—Displays the list of Performance Data Checklists, described in Section 7.5, "Performance Checklists" on page 50.

4) **Emerg. Checklist**—Displays the list of Emergency Checklists, described in Section 7.4, "Emergency Checklists" on page 47.

5) **Show Checklist**—Press *Show Checklist* to view the highlighted checklist.

6) **Selection Control**—Use right knob to move the blue outlined box up or down to highlight a specific checklist within each menu for viewing.
7.3 Checklist Buttons and Knobs

Figure 7.3 Example Normal Checklist

1) **Next Checklist**—When the current checklist is completed, indicated by all steps appearing green and checked off, press “Next Checklist” to view the next checklist in sequence.

2) **Done/Undo**—Press *Done* to change the current checklist item to green, place a checkmark to the right of it, and automatically step down to the next checklist item.

 If an already-acknowledged checklist item is highlighted, the *Done* button will be relabeled *Undo* allowing the item to be reverted to the undone state.

3) **Back**—Returns you to the menu of checklists in each type.

4) **Selection Control**—Once inside a Checklist, use the right knob to move up and down the checklist. The current step in the checklist is highlighted in magenta and has an arrow pointing to it from the right side.
7.4 Emergency Checklists

The EX5000 includes complete Emergency checklists. To access the Emergency checklists, press the *Emerg. Checklist* button in the lower left corner.

Figure 7.4 Emergency Checklists

1) **Checklist Types**—Provides access to the top-level Emergency checklists for each phase of flight including:
 - Ground Emergency
 - In-Flight Emergency
 - Landing Emergency
 - System Malfunctions

2) **Normal Checklist**—Press *Normal Checklist* to return to the selection of normal operating checklists.
3) **Available Checklists**—Menu of checklists within each type. Push *Show Checklist* to display the desired list.

4) **Show Checklist**—Press *Show Checklist* to view the highlighted checklist.
5) **Selection Control**—Use right knob to move the blue outlined box up or down to highlight a specific checklist within each menu for viewing.

Alternator Failure

ALT 1 Light Steady

1. ALT 1 Master Switch .. OFF
2. Alternator 1 Circuit Breaker CHECK and RESET
3. ALT 1 Master Switch .. ON

If alternator does not reset:

4. Reduce loads on Main Bus 1, Main Bus 2, and the Non-Essential Power Monitor Voltage .. OFF
5. ALT 1 Master Switch .. OFF
6. Land as soon as practical ..

Engine Partial Power Loss

ALT 1 Li

1. Fuel Pump .. Switch tanks
2. Fuel Selector .. Switch tanks
3. Mixture ... CHECK appropriate for flight conditions
4. Power Level .. SWEEP
5. Alternate Induction Air .. ON
6. Ignition Switch .. BOTH L, then R
7. Land as soon as practical ..

END OF CHECKLIST

ALT 2 Li

1. ALT 2 Master Switch ..
7.5 Performance Checklists

The Performance Data tables and charts are accessible from the Normal Procedures page. All data is derived directly from the aircraft POH.

The available charts are:

- Airspeeds for Normal Operation
- Wind Components
- Takeoff Distances
- Cruise Performance
- Landing Distances

In all airspeed and performance tables, the POH contains the most complete data available.
8 CMax Chart Pages (Optional)

CMax™ is an optional Avidyne feature that allows you to view Jeppesen Terminal charts on your EX5000. If CMax is installed on your aircraft, you can select Charts from the Page Bar to view the CMax charts. This section discusses the following topics:

- About CMax, page 51
- About Geo-Referenced Charts, page 52
- CMax Chart Page, page 52
- CMax Views, page 56
- CMax Selection Page, page 60

As pilot in command, it is your duty to have alternate sources of approach data available to you. Do not rely upon CMax charts as your sole source of navigation information.

It is critical that you update the Jeppesen database regularly and prior to conducting flight operations to insure accurate data. **Use of an outdated database is entirely at your own risk.**

8.1 About CMax

CMax charts include instrument approach procedures, arrivals, departures, airport diagrams, and various taxiway and airspace diagrams typical of Jeppesen printed charts. The CMax feature requires that you have a valid chart data subscription from Jeppesen Sanderson, Inc. For information on obtaining a CMax subscription, see the *Avidyne Data Update Guide* or the Jeppesen website at www.jeppesen.com.

The *Data Update Guide* also contains instructions for loading the chart data to your Zip Drive or USB Flash Memory Drive. See Section
13.1.2, "Loading CMax Chart Data" on page 106 for information about loading CMax Data onto your EX5000.

Note: You can load new CMax Chart data into the MFD as soon as you receive each data cycle. Any charts that have changes that are effective on a certain date are controlled within the data. The MFD will display the proper Chart data based on the current date and the effective date of the changes to the chart.

8.2 About Geo-Referenced Charts

The greatest additions to situational awareness come from charts that are geo-referenced. A chart is geo-referenced when the chart data supports a correlation of chart position to actual latitude and longitude coordinates. This allows an ownship symbol and flight plan legs to be accurately represented on the chart. If a chart is not geo-referenced, the ownship and flight plan legs cannot be drawn on the chart. Most Jeppesen approach charts and airport diagrams are geo-referenced; most arrival, departure, and miscellaneous charts are not.

8.3 CMax Chart Page

If CMax is enabled on your EX5000, you can access the CMax Charts Page by turning the Select knob to Chart. The Chart Page can have two charts ready for viewing at any one time: an airport diagram, and a procedure chart (or another miscellaneous chart associated with that airport). The airport and associated charts are selected on the Chart Selection Page, described in Section 8.5, "CMax Selection Page" on page 60.

The EX5000 Startup Page reports the valid dates for the currently loaded chart data. If the date for the next update has passed, the Startup Page will report this in yellow cautionary text. If the chart data becomes more than 10 weeks out of date, access to the charts shall be revoked until new chart data is loaded.

On power up, if your EX5000 is receiving a valid position from your GPS unit, the Chart Page will default to display the airport diagram of your current position. An approach procedure chart will not be displayed until one is selected. If no valid GPS position is available at start-up, the Chart Page will default to the Chart Selection Page for manual selection of a chart.
If you select the Chart Page immediately upon power up, CMax may still be initializing and will display the following message: “CMax Initializing/Please Wait.” The Chart Page will begin normal operation when initialization completes.

On landing, if the Chart Page is being displayed, the EX5000 will automatically switch to display the Airport diagram for the current location when the GPS Ground Speed drops below 50 knots.

The Chart Page shows the airport diagram of the current airport, with ownship symbol for current aircraft position, if the airport diagram is geo-referenced.

![Figure 8.1 CMax Chart Page (Airport)](image)

1) **Airport Identifier**—The airport identifier for the current airport displays in green.

2) **Chart Name**—The name of the current chart being displayed, also in green.

3) **Geo-referenced Symbol**—When the displayed chart is geo-referenced, a small globe displays. If the chart is not geo-referenced, the globe symbol is crossed out.
4) **Flight Plan Symbol**—an FPL symbol indicates the option to display the current flight plan is turned on. If the display of flight plan is turned off, the FPL symbol is crossed out. Note that if a chart is not geo-referenced or no flight plan is received from the GPS, the flight plan cannot be displayed even if the option is selected.

5) **Select Chart**—Displays the Selection Page to allow you to select a new chart for display. For more information, see Section 8.5, "CMax Selection Page" on page 60.

6) **Display**—Display allows you to toggle between displaying Airport and Procedure charts.
 - *Display Airport* shows when the current Procedure chart displays. Press *Display Airport* to display the Airport chart.
 - *Display Procedure* shows when the current Airport chart displays. Press *Display Procedure* to display the Procedure chart.

7) **View**—Controls which portion of the chart is being displayed. See details below.

8) **Remove Labels**—Removes the button labels from the page to allow a full view of the current chart. Press any button to redisplay the labels.

9) **Emerg. Checklist**—Displays the list of Emergency Checklists. See Section 7.4, "Emergency Checklists" on page 47.

10) **Ownship**—Displays the current position of the aircraft. The chart nominally remains fixed and the ownship symbol moves across the chart with aircraft movement.

11) **Pan Buttons**—The right-hand buttons allow you to manually move the chart on the screen. The pan buttons are only active when the current view can be panned. The Plan view of each chart can generally be panned; many information pages, such as header and departure views, cannot.

 Not shown: Center—When you use *Pan*, the *Center* button is displayed to allow you to re-center the chart. When panning, the aircraft position, and ownship symbol, may move towards or off the edges of the chart area. Press *Center* to re-center the chart on the current position hide the *Center* button.
12) **Zoom Control Knob**—The right knob allows you to zoom the chart for close-up examination of a specific area. The label only appears when the current view can be zoomed. Most information view pages, such as headers, cannot be zoomed. If you have panned the chart, zooming all the way out to the full-screen chart size also re-centers the chart on the screen.

A typical approach procedure chart is shown in Figure 8.2:

Figure 8.2 CMax Chart Page (Procedure)

1) **Flight Plan**—The flight plan is overlaid on the Plan View when you select the flight plan display option (on Selection Page) and the chart is geo-referenced. If a flight plan does not display, check that you selected the correct airport and approach.

2) **Flight Plan Active Leg**—The active leg of the current flight plan, if displayed, is magenta. Non-active legs are shown in green.

Note: The ownship symbol on the Chart page is always oriented according to the current GPS ground track. Therefore, the ownship is always pointed in the direction the aircraft is moving, and does not show any crab angle induced by crosswind components.
8.4 **CMax Views**

The EX5000 provides two sets of charts, Procedure and Airport. For ease of use and readability, each chart is divided into sections that are shown individually. Use the *Display* button to toggle between Procedure charts and Airport charts. Press *View* to cycle through the available views for that chart.

Note: If CMax detects non-standard data for a particular chart, a full chart view will be the only available view for that chart, and the geo-referenced ownship and flight plan will not be displayed.

8.4.1 Procedure Chart Views

For the Procedure chart, the Header, Profile, and Minimums views also feature a small “preview pane” of the Plan View, which, although too small to read all chart details, gives the user a general overview of the approach for situational awareness. The flight plan and ownship symbol are also displayed on the preview pane.
The available views are:

<table>
<thead>
<tr>
<th>#</th>
<th>View</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 of 4</td>
<td>Plan</td>
<td>Includes a flight plan overlay if available (shown in Figure 8.2).</td>
</tr>
<tr>
<td>2 of 4</td>
<td>Header</td>
<td>Contains general chart information and appropriate communication frequencies.</td>
</tr>
<tr>
<td>3 of 4</td>
<td>Profile</td>
<td>Includes the profile view of the approach procedure.</td>
</tr>
<tr>
<td>4 of 4</td>
<td>Minimums</td>
<td>Shows the descent minimums for the approach.</td>
</tr>
</tbody>
</table>

Figure 8.3 Procedure Chart views
8.4.2 Airport Chart Views
For airport charts, the available views are as follows:

Table 8.2 Airport Chart Views

<table>
<thead>
<tr>
<th>#</th>
<th>Chart</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 of 4</td>
<td>Plan</td>
<td>Includes a flight plan overlay, if available (shown in Figure 8.1).</td>
</tr>
<tr>
<td>2 of 4</td>
<td>Header</td>
<td>Includes general chart information and communications frequencies.</td>
</tr>
<tr>
<td>3 of 4</td>
<td>Runways</td>
<td>Shows runway information for the airport.</td>
</tr>
<tr>
<td>4 of 4</td>
<td>Departure</td>
<td>Displays specific departure procedure information.</td>
</tr>
</tbody>
</table>

Figure 8.4 Airport Chart Views
Note that not all charts will have all information sections. Airport charts, for example, may or may not have runway or departure information. For larger airports, this information is often large enough to warrant a separate chart, which can be selected from list on the Selection Page.

Charts that cannot be split into smaller sections are shown as a complete chart, with the View button not displayed, since only one View type is available.

Figure 8.5 Airport Departure Chart (Night View)
8.5 CMax Selection Page

1) Chart Selection list—A list of all charts available for the identified airport. Although the majority of charts listed are indeed instrument approach procedure charts and are generally referred to in this documentation as procedures, the list also includes other types of charts such as airspace diagrams, taxi diagrams, special instructions, and other miscellaneous charts.

Note: The EX5000 shows only those charts covered by your Chart data subscription. The Charts are listed in the Jeppesen chart index order.

2) Chart NOTAMs—The Chart NOTAMs button only displays if chart NOTAMs exist for the currently-selected airport. Press Chart NOTAMS to bring up a window that lists any associated chart NOTAMs for the airport currently entered in the Airport Entry Field. See Section 8.5.2, "Chart NOTAMs Page" on page 64 for more information.
3) **Day/Night**—Toggles the chart display between *Day* and *Night* modes. Day mode displays black text on a white background; Night mode is white text on a black background. Other colors such as water or shaded terrain are also adjusted for Day or Night mode. The EX5000 starts in Night mode to preserve night vision.

4) **Flight Plan**—Toggles the display of the flight plan overlay on the chart Plan View between DISPLAY and DSPLY OFF. Changes to this selection are effective immediately.

5) **Back to Active**—Returns to the current active chart display screen. Any inputs to the Airport Entry Field or Chart list are abandoned. Changes to flight plan display status, however, are preserved.

6) **Change Airport**—Moves the cursor to the Airport Entry field, described in Section 8.5.1, "Selecting an Airport" on page 62.

7) **Display Chart**—Loads the selected chart and displays it on the Chart Page. Remember that the associated Airport diagram is also automatically made available on the Chart Page when a procedure chart is loaded by pressing Display Chart.

Note: As a valid chart, the Airport diagram is listed in the Chart Selection list, however, it is not usually necessary to load the Airport chart, since it is always accessible on the Chart Page by pressing the *Display Airport* button.
8.5.1 Selecting an Airport
Use the Airport Entry Field to specify the airport you want to view.

1) **Airport Entry Field**—This field accepts airport identification codes (such as KCAD, etc.). The EX5000 will try to auto-complete an airport entry as the first characters are entered. Press the *AutoFill* button to immediately fill this field with the destination airport. Only those airports within the coverage area are auto-completed.

A list of all charts available for the identified airport appears in the chart list area. The name of the airport in the Airport Entry Field is listed next to the entry field.

![Figure 8.7 Airport Selection Page](Image)
2) **AutoFill**—When pressed, moves the detected destination airport listed on the button into the Airport Entry Field.

Note: The AutoFill button automatically detects the destination airport if the final waypoint is an airport or a waypoint that is part of an instrument approach procedure. However, for some approaches, *AutoFill* may detect another nearby airport rather than the intended destination. Make sure the desired airport is displayed before pressing the button. *AutoFill* does not display under the following conditions:

- An Airport cannot be determined due to GPS limitations.
- When the feature is not supported by some GPS models.
- The current airport destination is not available in your chart data coverage area.

3) **Select Chart**—Moves the active selection cursor from the Airport Entry Field to the Chart Selection list.

4) **Next Letter**—Use *Next Letter* to move the cursor within the Airport Entry Field to the next character location.

5) **Select Knob**—Use the right knob to select the character for the current cursor position when entering an airport identifier.
8.5.2 Chart NOTAMs Page
Displays the chart NOTAMs associated with the currently displayed airport.

Figure 8.8 Chart NOTAMs Page

1) **Close**—Press Close to close the Chart NOTAMs window and return to the Selection Page.

Press the Chart NOTAMs button from the Selection Page to display the chart NOTAMs associated with that airport. Chart NOTAMs specific to that airport are listed first, followed by any general chart NOTAMs.

Note: Chart NOTAMs address changes to information contained on the charts, and do not include local or regional operational NOTAMs. Always obtain local and regional NOTAMS before any flight.
In the unlikely event of data corruption during operations, the EX5000 may exhibit one of the following symptoms:

- EX5000 reports that no chart data is available at all.
- Chart page is not accessible.
- Expected airports are not available for chart selection.

If you observe any of these, reload the CMax chart data using the CMax Dataloader, described in the Avidyne Data Update Guide or in the Jeppesen JeppView for MFD Quick Start Guide. If problems persist, contact your dealer or Avidyne Technical Support.

As pilot in command, it is your duty to have backup sources of data available.
9 Engine Page

The Engine Page displays the health and performance status of the aircraft engine. Most of the engine indications are transmitted to the EX5000 via a remotely mounted Data Acquisition Unit (DAU) or Sensor Interface Unit (SIU) while the remainder are calculated by the Entegra EX5000 or acquired from the Entegra Primary Flight Display (PFD).

The information displayed on your Engine Page depends on:

- Your aircraft type and whether your aircraft is equipped with a DAU or an SIU.

Note: If your aircraft is configured with an SIU, certain features may not be supported by the wiring configuration of your aircraft. See the *Pilot Operating Handbook* for more information.

- Whether you have the optional EMax™ Total Engine Management package installed. With EMax installed, the following additional information is available from the Engine Page:
 - Initial Usable Fuel Page to simplify fueling and fuel calculations.
 - Automated Lean Functions.

For more information about EMax, see Section 9.5, "EMax Total Engine Management" on page 78.

Note: The Engine Page is unique for each airplane model. Due to differences in aircraft models and features, the images in this chapter may differ slightly from the display in your aircraft. However, the general functions are the same.
In the event of an engine Data Acquisition Unit (DAU) failure, affected indicators will show a failure as follows:

- Numeric Readouts: Displayed as three white dashes
- Bar Graphs: Disappear
- Needles: Disappear

What to do:

For failure of single indicators, land as soon as practical and consult an Avidyne Authorized Entegra Service Center.

If all indicators fail, check and/or cycle the circuit breaker for the engine DAU. If functionality is not restored, land as soon as practical and have a maintenance facility inspect the system.

9.1 Cirrus Engine Page

Figure 9.1 Engine Main Page
1) **Engine Gauges**—Provides readouts of engine function:

- **RPM**—Displays current engine speed in revolutions per minute as reported by the DAU.
- **Manifold Pressure**—Indicates the current engine intake manifold pressure reported by the DAU.
- **% Power**—Indicates the calculated percent of maximum rated power currently being produced by the engine. For SIU-equipped aircraft, Percent Power is calculated by the EX5000 based on engine RPM, manifold pressure, outside air temperature, and fuel flow. For DAU-equipped aircraft, the % Power is calculated by the PFD and sent to the MFD.
- **Oil Temperature**—Indicates the current engine oil temperature in degrees Fahrenheit as reported by the DAU.
- **Oil Pressure**—Indicates engine oil pressure in pounds per square inch (PSI) as reported by the DAU.

2) **Temperatures**—Displays the Turbine Inlet Temperature (TIT) (Turbonormalized engines only), Exhaust Gas Temperature (EGT) and Cylinder Head Temperature (CHT):

- **Turbine Inlet Temperature (TIT)—Turbonormalized Engines only**—Indicates the turbine inlet temperature in degrees Fahrenheit as a bar graph. The TIT is also displayed as a numeric indication above each bar. An up or down trend arrow will also appear below this numeric indication to indicate whether the TIT is rising or falling.

Additionally, for turbonormalized engines, if a problem occurs with the primary air intake system, the engine controller may automatically open the alternate induction door. If this occurs, then the ALTN INDUCT DOOR OPEN indicator displays on the Engine Page as long as the door is open. A message also displays in the message bar and on the Aux Main Page.
Exhaust Gas Temperature (EGT)—If the optional EMax engine monitor is installed, indicates the exhaust gas temperature of each cylinder (in degrees Fahrenheit) as a bar graph. The individual EGT of each cylinder is displayed above each bar. An up or down trend arrow appears below the temperature for each cylinder to indicate whether the EGT is rising or falling.

The temperatures are reported by the DAU. You can use them along with the Lean Assist function to lean the aircraft’s engine for desired performance.

If EMax is not installed, only the cylinder with the temperature probe displays.

Cylinder Head Temperature (CHT)—If EMax is installed, indicates the temperature (in degrees F) of each engine cylinder head as reported by the DAU. The individual temperature of each cylinder is also displayed above each bar. A white up or down trend arrow appears above or below the temperature to indicate whether a cylinder’s temperature is rising or falling.

If EMax is not installed, only the CHT for one cylinder displays.

3) **Absolute**—(EMax only). Absolute mode is the default display mode, which indicates the current exhaust gas temperature for each cylinder.

4) **Normalize**—(EMax only). When Normalize is selected, all of the current EGT's are set to zero. The bar graphs then indicate overall changes in EGT rather than displaying the actual temperature values (as in absolute mode).

5) **Lean Assist**—(EMax only). Allows you to use Lean Assist mode, described in Section 9.3, "Using Lean Assist" on page 74.

6) **Electrical Gauges**—Display information about the state of the electrical system:

- **M. BUS**—Indicates the voltage of the main bus in volts as reported by the DAU.

- **E. BUS**—Indicates the voltage of the essential bus in volts as reported by the DAU.
ALT. 1—Indicates the output of Alternator 1 as reported by the DAU.

ALT. 2—Indicates the current output of Alternator 2 as reported by the DAU.

BATT—Indicates the current charge or discharge condition of the aircraft battery in Amps:

- **Chrg**—Indicates that available electrical power is being used to charge the battery
- **Dschg**—Indicates that the electrical system is operating at maximum capacity and that battery power is being consumed.

For engines with an SIU, the battery current displays when the alternator is not supplying current. In this case, BATT indicates the battery discharge rate to help shed electrical load.

7) **Fuel Data**—If EMax is installed, the EX5000 displays Fuel Used, Fuel Remaining, Time Remaining, and Fuel Economy in the fuel flow area of the Engines Page. If EMax is not installed, only Fuel Flow displays.

- **FLOW**—Displays the current fuel flow in gallons per hour as reported by the DAU.
- **USED**—Displays the total amount of fuel used since the last engine start as reported by the DAU.
- **REM**—Displays the total amount of fuel remaining in gallons. Remaining Fuel is calculated by the EX5000 based on the starting fuel entered by the pilot on the Initial Usable Fuel Page and fuel flow reported by the DAU.
- **TIME**—Displays the amount of time remaining before the total usable fuel on board will be consumed. Time Remaining is also calculated by the EX5000 based on the setting from the Initial Usable Fuel Page and fuel flow as reported by the DAU. This value is only displayed when the GPS ground speed is greater than 50 knots.
The Time Remaining depends on the current fuel flow, and does not factor in any required reserves. Changes to power settings or winds aloft encountered can drastically alter your range or endurance.

- **ECON**—Displays the current fuel economy in nautical miles per gallon. Fuel economy is based on the fuel flow as reported by the DAU and the groundspeed.

8) **Density Alt**—For DAU-equipped aircraft, displays the Density Altitude reported by the Entegra PFD. Density Altitude is pressure altitude corrected for non-standard temperature. Density Altitude affects aircraft performance, especially under high Density Altitude conditions. On the EX5000, Density Altitude is displayed in feet MSL, rounded to the nearest 100 feet. Density Alt does not display on SIU-equipped aircraft.

9) **Outside Air Temperature (OAT)**—Indicates the ambient air temperature as reported by the PFD. Press OAT Units to change the display between degrees Fahrenheit and degrees Celsius.

10) **Emerg. Checklist**—Displays the list of emergency checklists. For more information, see Section 7.4, "Emergency Checklists" on page 47.

11) **Initial Fuel**—(EMax only). Opens the Initial Usable Fuel Page to allow you to indicate the amount of fuel in the tanks. The Initial Usable Fuel Page is described in Section 9.2, "Initial Usable Fuel Page" on page 73.

It is critical that you accurately enter the actual onboard fuel quantity on the Initial Usable Fuel Page to ensure accuracy of the fuel totalizer functions.

Visually check the actual fuel in each tank in accordance with aircraft POH procedures as part of the aircraft pre-flight inspection. After the amount of fuel has been visually confirmed, enter the amount into the Initial Usable Fuel Page.

Inaccurate fuel entry can result in a misleading indication of fuel or time remaining, which could lead to fuel starvation, loss of engine power, and forced landing.
Be sure to cross-check fuel quantity and fuel remaining during flight.

- **Fuel quantity** is the amount of fuel in the tanks, as measured by the tank probes. See the aircraft POH for any limitations on the fuel measurement.

- **Fuel remaining** is based on a calculation using the initial fuel amount entered by the pilot, and the fuel flow integrated over the time of the flight so far.

If the Check Fuel Remaining Warning (Red) displays, prepare to land immediately!
9.2 Initial Usable Fuel Page

If your aircraft is equipped with the optional EMax Total Engine Management package, the Initial Usable Fuel Page displays on startup or when you press the *Initial Fuel* button. The EX5000 displays the Initial Usable Fuel Page and asks you to input the amount of fuel added to the aircraft.

Note: Only use the Initial Usable Fuel Page to enter changes to the known amount of fuel in the aircraft tanks. The Initial Usable Fuel Page is not updated during flight and so cannot be used as an in-flight reference of remaining fuel.

Figure 9.2 Cirrus SR22 Initial Usable Fuel Page

1) **Fuel Units**—Toggles between US gallons or liters.
2) **Fuel Full**—Press when fuel tanks are filled to capacity.
3) **Fuel to Tabs**—Press when the fuel is filled to the tab indicators in the tanks.

Fuel Full and *Fuel to Tabs* allow you to quickly set the amount of fuel to commonly used amounts. In addition, you can use the right knob to fine-tune the amount of fuel added.

4) **Fuel Done**—Press to exit the Initial Usable Fuel Page when the desired amount of fuel has been entered.
9.3 Using Lean Assist

When the optional EMax package is installed, the EX5000 is equipped with a Lean Assist function that allows you to set the optimum mixture for various operating conditions. The EX5000 automatically detects whether you are leaning for best power or best economy and provide visual messages to guide you toward the correct mixture setting.

The Lean State displays in the Engine Data Block on the Map Page, described in Section 9.4.1, "Lean Data Block States" on page 77.

1) To lean the engine for best power, begin by pressing Lean Assist and smoothly lean the mixture control.

2) The Engine Page displays “Looking for First Peak” at the top of the temperatures section of the display.

3) When leaning for best power, the final mixture setting is based on first cylinder to peak. As the mixture is leaned look for a rise in EGT. In the example shown in Figure 9.3, cylinder #5 is the first to peak, and Peak Detected displays on the Engine Page.

4) At this point you can begin to richen the mixture. As the mixture is richened, the display first annunciates Looking for #5 to Peak (Rich), and then Peak Detected (Rich) as it determines the peak temperature. Finally, Best Power displays when the optimum best power mixture has been achieved.

It is very important that you adjust the mixture slowly and continuously. Leaning the mixture too quickly can disrupt the EX5000’s ability to accurately track the peak EGT, and could result in a mixture setting that can damage the engine. Always be sure to monitor Oil Temperature and CHT readings, to ensure they stay within specified limits.

If at any time during the Lean Assist process the engine begins to run roughly, richen the mixture slightly until the roughness abates.

Note: See your aircraft POH or Engine Operator’s manual for information on leaning and engine operating limits.

9.3.1 Leaning for Best Power

1) To lean the engine for best power, begin by pressing Lean Assist and smoothly lean the mixture control.

2) The Engine Page displays “Looking for First Peak” at the top of the temperatures section of the display.

3) When leaning for best power, the final mixture setting is based on first cylinder to peak. As the mixture is leaned look for a rise in EGT. In the example shown in Figure 9.3, cylinder #5 is the first to peak, and Peak Detected displays on the Engine Page.

4) At this point you can begin to richen the mixture. As the mixture is richened, the display first annunciates Looking for #5 to Peak (Rich), and then Peak Detected (Rich) as it determines the peak temperature. Finally, Best Power displays when the optimum best power mixture has been achieved.
5) When you are happy with the engine lean setting, exit the Lean Assist function by pressing Normalize or Absolute.

9.3.2 Leaning for Best Economy

1) To lean the engine for best economy, begin by pressing Lean Assist and smoothly lean the mixture control.

2) The EX5000 displays Looking for First Peak at the top of the temperatures section of the display.

3) As the EGT rises the first cylinder will reach peak EGT followed by the second cylinder.

4) Continue to slowly lean the mixture.

5) After the third cylinder peaks, the annunciation will change to Looking for Last Peak. The final mixture setting is based on the last cylinder to peak.

6) As the mixture is leaned further, the last cylinder will eventually peak, and Last Peak Detected will display on the Engine Page.

7) Continue leaning until Best Economy displays, which indicates that the best economy mixture has been achieved.
8) When you are happy with the engine lean setting, exit Lean Assist by pressing Normalize or Absolute.

Figure 9.4 Leaning for Best Economy
9.4 Data Blocks on Map Page

The Engine Sensor Status Box displays useful engine information on the Map Page. When the Engine Sensor Status Box is available, it displays below the top left data block. The default Engine Sensor Block displays both graphical and text data about percent power, CHT, and EGT, and other data. For information about configuring the data blocks, see Section 10.4, "Data Block Edit Page" on page 85.

![Figure 9.5 Engine Data Blocks—Map Page](image)

For aircraft equipped with turbonormalized engines, the Engine Sensor Status Box also displays the Turbine Inlet Temperature (TIT).

Data blocks in the upper left and right corners of the Map Page can also be configured to show engine instrument information. The available data blocks depend on your aircraft type and configuration. Certain data blocks are available only with the EMax package.

9.4.1 Lean Data Block States

The Lean data block shows Lean mode status. On the Map Page, the Lean data block will show “Economy” or “Power” when you have completed and exited Lean Assist.

Other Lean data block states are:

- **Leaning**—Displayed when you switch back to the map page before exiting Lean Assist mode.
- **Incomplete**—Displays when you exit Lean Assist mode before achieving the desired lean state.
- **FF Change**—Displays when the lean state is changed by a fuel flow adjustment.
- **Pwr Change**—Displays when the lean state is changed by a power adjustment.

For more information about the data blocks, see Table 13.9 Data Block Information on page 117.
9.5 EMax Total Engine Management

The EMax™ Total Engine Management is an optional feature that provides the following information about the health of your engines:

- Initial Usable Fuel Page to simplify fueling and fuel calculations.
- Automated Lean Functions.
- Full CHT and EGT temperature displays on the Engine Page and Map Page data blocks. For information about the engine data on the Map Page, see Table 13.10 Engine Instrument Data Block Information on page 118.
- Real-time recording of time, position, and critical engine performance parameters. EMax records engine and position data for the last 100 hours of flight. The data is recorded every six seconds whenever the MFD is operating.

The output, which you can download via the EX5000's bezel-accessible data port, is in two files:

- An ASCII text file (.txt) containing the engine performance data, can be opened by most spreadsheet programs for analysis.
- A Jeppesen Track file (.log), containing position data that is compatible with Jeppesen FliteStar. For more information about the FliteStar track file, see www.Jeppesen.com.

For information about downloading EMax output data, see Section 13.1.3, "Downloading EMax Data" on page 107.

For information about adding EMax to your EX5000, see your Avidyne dealer.
10 Aux Pages – Configuring the EX5000

The Aux Pages allow you to set up and configure a number of options on your EX5000. From the main Aux Page, you can view informational messages and select the options you want to configure.

This section discusses the following topics:

- **Aux Main Page**, page 79
- **Airport Filter Setup Page**, page 81
- **Declutter Setup Page**, page 83
- **Data Block Edit Page**, page 85
- **System Time Page**, page 87

10.1 Aux Main Page

1) **EX5000C Version Information**—Software part number, serial number, and media part number are displayed here. Expiration dates for on-board databases are also shown on this page.
2) **Message List including sensor status**—A record of the messages displayed in the message bar. If more messages are active than space allows, the right knob allows scrolling.

3) **Lightning Strike Test**—Initiates a self-test of the lightning sensor, if installed.

4) **Nav Src**—If your aircraft is equipped with multiple GPS units, switches between GPS1 and GPS2 to provide position information and flight plan data to the moving map.

5) **Emerg. Checklist**—Opens the Emergency Checklist Page. For more information, see Section 7.4, "Emergency Checklists" on page 47.

6) **Setup Menus**—Buttons to select specific setup functions including Airport Filter, Declutter Settings, Data Block Editing, and System Time.

 Scroll Knob—If there are more messages than fit on the current page, **Scroll** allows you to scroll the message list to see the remainder of the messages.

The following buttons display only if a SkyWatch traffic sensor is installed:

- **Traffic Standby**—If a SkyWatch traffic sensor is installed, switches the sensor back into standby mode only while on the ground. To view traffic data while on the ground press **Traffic** in Map Page.

- **Traffic Self-Test**—Initiates a 30 second self test of the SkyWatch traffic sensor only while on the ground. This button replaces the **Traffic Standby** button after the Traffic sensor has entered Standby.
10.2 Airport Filter Setup Page

The Airport Filter Setup Page allows you to set criteria for nearest airport searches of the database. You can select towered and/or non-towered airports, the type of surfaces you prefer to land on, and the minimum runway length based on your particular aircraft or type of flying. The values selected on this page also dictate the types of airports that get displayed on the map.

![Airport Filter Setup Page](Image)

Figure 10.2 Airport Filter Setup Page

1) **Airport Type**—Select Towered, Non-Towered, or both.

2) **Surface**—Select between hard, soft, and/or water surfaces.

Note: To display airports with both hard surface and water runways check the hard surface box.

3) **Minimum Runway Length**—select the minimum runway length from 2000ft.—7000ft. or show all lengths.

4) **Save**—Saves settings and returns to the Aux Main Page.

5) **Cancel**— Cancels any changes and returns to the Aux Main Page.
6) **Change Knob**—The left knob changes the value or status of the selected field.

7) **Select Knob**—The right knob moves the blue field selector.
10.3 Declutter Setup Page

The Declutter Setup Page is used to define the navigation symbols and other default display settings for the Declutter button. Individual items can be selected for display or a pre-defined group of items can be selected by choosing VFR or IFR defaults.

![Declutter Setup Page Diagram]

Figure 10.3 Declutter Setup Page

1) **IFR & VFR Defaults**—Sets the declutter settings to predefined factory settings based on typical usage.

2) **Display**—Each item has three possible display settings:

 - **On**—The item displays all the time.
 - **Auto**—The item displays automatically and declutters automatically based on pixel density of the display at a given range.
 - **Off**—The item is never displayed.

Note: The EX5000 may limit the number of symbols displayed based on the total symbol density.
3) **Label**—A check in the label box indicates that the item name will be displayed along with the symbol.

4) **Range Dots**—The circles represent the seventeen available map scales. A cyan-colored circle indicates that the item is displayed at that range. The vertical dash line indicates the map current scale.

Note: The 1000NM and 1500NM columns are not displayed because this data is never displayed at these ranges.

5) **Save**—Saves settings and returns to the Aux Main Page.

6) **Cancel**— Cancels any changes and returns to the Aux Main Page.

7) **Change Knob**—The left knob changes the value or status of the selected field.

8) **Select Knob**—The right knob moves the blue field selector.

Note: If all display elements are forced on via the Declutter Setup Page, the quick declutter setting on Map Page is set to maximum, and the Map Range is set greater than 400NM, Map performance may be slow, and in some cases, may cease to operate. If this occurs, you will need to recycle the EX5000 power to restore functionality.

To avoid this situation, Avidyne suggests that you select the IFR or VFR Default declutter setting.
10.4 Data Block Edit Page

Data blocks in the upper corners of the Map Page can be edited to display information from a list of available data types. The data available depends on your aircraft and EX5000 configuration. A series of dashes represents data that is invalid or unavailable.

Figure 10.4 Data Block Edit Page

1) **Factory Defaults**—Resets the Data Blocks to the original display mode.

2) **Left Data Block**—Allows up to 6 lines of data for display and 4 slots for Fuel QTY/TIT/CHT or Fuel QTY/EGT/CHT data blocks. The data block is resized based on number of lines selected. The data block disappears if all lines are blank.

3) **Right Data Block**—Allows up to 6 lines of data for display. The data block is resized based on number of lines selected. The data block disappears if all lines are blank.

 - See Table 13.9 Data Block Information on page 117 for full description of Navigation data available for display in Data Blocks.
Aux Pages – Configuring the EX5000

- See Table 13.10 Engine Instrument Data Block Information on page 118 for full description of Engine data available for display in Data Blocks.

4) **Save**—Saves settings and returns to the Aux Main Page.

5) **Cancel**— Cancels any changes and returns to Aux Main Page.

6) **Change Knob**—The left knob changes the value or status of the selected field.

7) **Select Knob**—The right knob moves the green field selector.
10.5 System Time Page

The System Time Page allows you to set the “time zone offset” based on your location relative to UTC. In addition, you can set the amount of time the button labels stay up on the Map Page before decluttering or set to never declutter.

Before conducting flight operations, verify that time and date settings are correct and in GMT (UTC). It is critical that the time be set to the correct GMT to provide accurate display of Datalink weather.

1) Time Source—Select the time source. If “Auto” is selected, the EX5000 will first try to receive current time data from the attached GPS unit. If the GPS signal is not available, it will try to receive current time data from Narrowcast Datalink. If neither are available, the EX5000 will use the last known time data.

2) Time and Date Setting—If manual time source is selected, it allows you to manually adjust the current UTC value.
3) **Time Zone**—Set the time zone for your location, based on an offset from UTC.

Note: The EX5000 maintains a constant offset from UTC and does not adjust local time for daylight savings.

4) **Menu Timeout**—Set the amount of time that the menus remain visible on Map Page from the following choices (in seconds): 2, 5, 10, 20, 30, 40, 50, 60, Never.

5) **Save**—Saves settings and returns to the Aux Main Page.

6) **Cancel**— Cancels any changes and returns to the Aux Main Page.

7) **Change Knob**—The left knob changes the value or status of the selected field.

8) **Select Knob**—The right knob moves the blue field selector.
11 Using Datalink (Optional)

This section discusses the following topics:

- About Datalink Weather, page 89
- Map Page with Datalink Weather, page 91
- Trip Page with Datalink Weather, page 95
- Nearest Page with Datalink Weather, page 97
- Datalink Coverage, page 98

11.1 About Datalink Weather

To enhance weather data for your flights, you can optionally install an external Broadcast Datalink receiver that receives a constant stream of weather data and is fully integrated with your EX5000. Broadcast Datalink requires a fixed monthly subscription, available from XM WX Satellite Weather (a service of XM Satellite Radio).

Use Datalink weather only for strategic planning purposes. Do not use the EX5000 to penetrate severe weather, thunderstorms, cells or lines of cells.

Datalink does not qualify as (and is not intended to replace) an FAA-approved weather briefing. Do not rely upon Datalink to replace pre-flight or inflight briefings and other sources.

Note: If you have a Broadcast Datalink receiver installed, you must purchase service from XM Satellite Radio to automatically activate the receiver. See Section 13.2, "Broadcast Datalink Service Purchase and Activation" on page 109 for information about XM WX service.

The Broadcast Datalink receiver receives weather data for the entire contiguous United States (CONUS). It is not necessary to enable or disable the receipt of individual types of data. The display of the received data is controlled on the appropriate Pages: Map, Trip or Nearest.

Weather data coverage from the XM WX Satellite Weather includes the continental United States. Outside this area, weather information is not provided. The boundary of the coverage area is shown on the Map Page as a “hatched” pattern, as shown in Figure 11.6 on page
99. Some remote areas of the United States may not have NEXRAD coverage. See the Aeronautical Information Manual (AIM) for more information on NEXRAD coverage areas.

Note: If you have recently activated an XM WX subscription, the Service Level may temporarily display as “None defined” until the Datalink receiver confirms your Service Level. This process may take a day or two, but you will still receive Datalink weather information. When you start up the EX5000, the Datalink receiver will enter an “activation mode” to confirm the Service Level, which will cause a delay in receiving weather data.
11.2 Map Page with Datalink Weather

The Map Page is the primary display for the Datalink weather information. Displayed on the Map Page are NEXRAD radar images, lightning strike information, AIRMETs/SIGMETs, graphical METAR symbols, and TFRs.

1) Sensor Status Block—The Sensor Status Block gives the status of the weather information presented. The Lightning sensor status reflects whether the lightning information displayed on the Map is from Datalink or from an on-board lightning sensor, if installed. If space is available, the Datalink sensor status, which includes the age of the most recent NEXRAD radar image, is shown on the bottom line of the upper block. If optional sensors are installed, the Datalink sensor icon is displayed in the lower left portion of the screen.

For more information about the Sensor Status Block icons, see Table 13.1 Sensor Status Block Symbols on page 112.

Using Datalink (Optional)

3) **WX Rprts**—Controls the type of Datalink weather information displayed on the map, as follows:

- **All**—Displays graphical METARs, AIRMETs, and SIGMETs.
- **METARS**—Displays graphical METARs only.
- **AIRMET**—Displays graphical AIRMETs only.
- **SIGMET**—Displays graphical SIGMETs only.
- **DSPLY OFF**—Turns off display of all weather information.

4) **Wx Ovly**—Displays only when Broadcast Datalink is installed. Controls the type of weather information displayed on the map. Press WX Ovly to toggle the display between:

- ![NEXRAD](image) Displays Broadcast NEXRAD information on the map. Depending on your Broadcast Datalink service level, the NEXRAD overlay also displays Storm Cell symbols when significant weather formations are determined by the weather provider.
- **DSPLY OFF**—Removes all NEXRAD data from the map display.

11.2.1 Symbols Displayed using Datalink

This section describes the symbols displayed using Datalink. For a complete list of Map symbols, see Section 13.5, "Map Symbols" on page 114.

- **Lightning strike symbols**—Lightning information from XM WX Satellite Weather is matched to grid coordinates with a resolution of approximately 2 NM. The lightning symbols darken as they age until they are removed after approximately 15 minutes. Overlapping lightning symbols may be decluttered for clarity:
METAR symbols—Each METAR reporting station shown on the Map Page will have a METAR condition flag displayed. The color of the METAR flag indicates the current conditions at that airport:

<table>
<thead>
<tr>
<th>METARs</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>VFR: > 5 SM & > 3000 ft</td>
<td>Very Good Flight Vision</td>
</tr>
<tr>
<td>MVFR: 3-5 SM or 1000-3000 ft</td>
<td>Moderate Flight Vision</td>
</tr>
<tr>
<td>IFR: 1-3 SM or 500-999 ft</td>
<td>Instrument Flight Vision</td>
</tr>
<tr>
<td>LIFR: .5-1 SM or 200-499 ft</td>
<td>Limited Instrument Flight Vision</td>
</tr>
<tr>
<td><CAT1: <.5 SM or <200 ft</td>
<td>CAT-1 Flight Vision</td>
</tr>
</tbody>
</table>

AIRMETs/SIGMETs—AIRMETs and SIGMETs are shown as ribbed lines enclosing the area of the advisory and are color coded and labeled as to their type. For more details, see Section Table 13.7, "Airspace and Airways Lines" on page 116.

NEXRAD Radar Images—XM WX satellite weather NEXRAD images are delivered with a resolution of approximately 1 NM. The EX5000 smoothes the edges of the NEXRAD images, so that the images are not distracting at smaller zoom ranges. The NEXRAD colors conform to aviation standards: green, yellow, red, and magenta depict varying intensities of rainfall, and shades of blue for snow and pink for mixed precipitation. A handy legend for the NEXRAD colors is found on the Trip Page:

Storm Cells—If storm cells are present, the EX5000 displays the cells along with the cell’s groundspeed, in knots, and direction of travel. If there is a greater than 50% chance of hail, the cell displays with a white background.

TFR—Temporary Flight Restrictions (TFRs) are reported over Datalink. TFRs are shown with solid red lines on the Map Page. Note that at a full Map Declutter setting (all navigation data and airspace removed), TFRs will also be removed from the display.
11.2.2 Using Datalink without a Traffic Sensor
Without a Traffic sensor installed, the EX5000 takes advantage of the available buttons and the WX Reports button is split into two buttons, Air/Sig and Metars, as shown below.

![Figure 11.2 Datalink Weather without Traffic Sensors](image)

1) **Metar**—Controls display of the graphical METAR symbols on the Map Page. Press Metar to toggle between ON and DSPLY OFF.

2) **Air/Sig**—Controls the display of AIRMETs and SIGMETs. Press Air/Sig to cycle between ALL, AIRMET, SIGMET, and DSPLY OFF.
11.3 Trip Page with Datalink Weather

The EX5000 Trip Page also displays weather information from the weather Datalink. Each waypoint on the current active flight plan is associated with a METAR reporting point. For non-airport waypoints, the nearest METAR is used. The general conditions are reported with the same METAR flags as used on the Map Page, here shown in a column for each waypoint. If legs on the flight plan exceed 100 miles in length, the EX5000 selects “intermediate waypoints” in between the waypoints of the leg, to provide greater situational awareness of the weather conditions along the route.

Figure 11.3 Trip Page with Datalink Weather

Trip Page information includes the following:

1) **METAR symbols**—A METAR report is shown for each flight plan waypoint that uses the same METAR condition symbols as described in Section 2.2, "Map Page Symbols—Terrain and Position" on page 15.

2) **Display area**—Displays the data requested from the *Display button selection.*
3) **Destination Airport Information**—Provides quick access to airport information for the destination airport, when available.

4) **Display**—Controls the display in the bottom half of the Trip Page. Press Display to cycle between METAR, Legend, Status, Winds Aloft, and TAF data. For more detailed information, see Section 5.1, "Trip Page Information" on page 35.

- **METAR**—Displays the text METAR for the currently selected waypoint. If the METAR report is for an airport near the waypoint, the distance and direction from the waypoint is shown.

- **Legend**—Displays a legend for all of the Datalink weather symbology used on the EX5000.

- **Broadcast Status**—Displays the current status of Datalink, including the time since last reception of the different types of weather data.

- **Winds Aloft and Freezing Level**—Depending on your XM WX service level, displays Winds Aloft and Freezing Level data from Broadcast Datalink, if available. The Winds Aloft direction is measured from true (not magnetic) North. Winds are interpolated for each Trip Page waypoint and are based on a computer forecast model that is updated hourly.

 The Freezing Level forecast displays the expected altitude of the freezing level for the waypoint.

- **TAFs**—The EX5000 provides text Terminal Aerodrome Forecasts (TAF) from the National Weather Service via Broadcast Datalink, if available. TAFs are not decoded.

5) **Select Knob**—Use the right knob to scroll up and down the waypoint list to view text METARs for the waypoints on the route.

For more information about the Trip Page, see Section 5.1, "Trip Page Information" on page 35.
11.4 Nearest Page with Datalink Weather

The EX5000 Nearest Page also displays METAR information received via Datalink. Similar to the Trip Page, the METAR symbols are displayed in a column next to the Nearest airports list, for all airports that have weather reporting stations. Airports that do not report METARs do not have a METAR symbol shown. When Datalink is enabled, the text METAR for the currently selected airport is displayed on the lower half of the Nearest Page.

![Figure 11.4 Nearest Page with Datalink Weather](image)

For information about Datalink weather on the Nearest Page, see Chapter 6 "Nearest Page (NRST)" on page 40.
11.5 Datalink Coverage

Weather data coverage from XM WX Satellite Weather includes the areas shown in Figure 11.5. Outside this area, weather information is not provided. The boundary of the coverage area is shown on the Map Page as a “hatched” pattern, as shown in Figure 11.6 on page 99. Additionally, some remote areas of the United States may not have NEXRAD coverage. These areas will show the same hatched pattern on the EX5000 Map Page. See the Aeronautical Information Manual (AIM) for more information on NEXRAD coverage areas.

Note: If coverage is temporarily unavailable for an area (due to satellite or other outages), that area will also display as hatched.

Figure 11.5 XM WX NEXRAD Coverage Area
Figure 11.6 Limits of Datalink Coverage Area
12 Using the EX5000 Outside the US

When flying outside the United States, certain features of the Entegra EX5000 will not be available or will only be available under some circumstances. This section describes these differences.

12.1 Features Available in the US Only

The following features are generally not available on the Entegra EX5000 when flying outside the United States.

- **Obstacle Display**—The obstacle database is valid only for the United States.
- **TIS Traffic**—TIS Traffic is only available in the US where Mode-S radar service is available. For more information about TIS sensors, see Section 1-3-5 of the Aeronautical Information Manual.
- **XM WX Weather**—XM WX Satellite Weather, and therefore EX5000 Datalink features, are not currently available outside CONUS.

12.2 Features Specific to International Flight

- **CMax Chart Data**—Terminal procedure chart availability is determined by your CMax chart subscription coverage. For questions regarding your coverage area, contact Jeppesen at www.jeppesen.com, or by phone (for western hemisphere, including South America, call +1-303-799-9090, for eastern hemisphere, including Europe, call +49 6102 5070).
- **Terrain Data**—Avidyne provides terrain data for two areas: the Americas, and International (everything else). If you are flying in an area where your current terrain data is not supported, terrain will not display (similar to the Base view on the Map Page).

NOTAM information is subject to constant change. It is **extremely important** that you check with your local flight service or other official flight advisory service for applicable NOTAMs before EVERY flight.
When purchasing an EX5000, you can specify which terrain data you want on your MFD. An International Conversion Utility is available from Avidyne that changes the MFD terrain data between Americas and International. The utility can be installed in the field at an Avidyne Authorized Entegra Service Center. For information about the International Conversion Utility contact Avidyne Technical Support.
13 Reference

This section contains the following information:

- *Updating Your Databases*, page 103
- *Broadcast Datalink Service Purchase and Activation*, page 109
- *Cleaning the EX5000 Screen*, page 111
- *Sensor Status Block Symbols*, page 112
- *Map Symbols*, page 114
- *Line Styles*, page 116
- *Data Blocks*, page 117
- *TAWS Messages*, page 119
- *Nav Messages*, page 121
- *Traffic Messages*, page 122
- *Lightning Messages*, page 124
- *Engine Messages*, page 126
- *PFD Messages*, page 129
- *Broadcast Datalink Messages*, page 130
- *Abbreviations and Definitions*, page 134
13.1 Updating Your Databases

Avidyne makes use of three different types of data that can be uploaded to or downloaded from your EX5000:

- **NavData**—For the Map Page, Avidyne uses NavData from Jeppesen Sanderson, Inc. It is your duty as pilot in command to ensure that the data you fly with remains up to date.

- **CMax™ Chart Data**—An optional Avidyne feature that allows you to view JeppView chart data on your EX5000.

- **EMax™ Total Engine Management**—EMax tracks engine and other data, which you can download from the EX5000 to your PC for analysis.

You can use a Zip Drive or USB Flash Memory Drive to move data between your PC and the EX5000. For more information about the databases, and about loading data from your PC to a Zip Drive or USB Flash Memory Drive, see the *Avidyne Data Update Guide*.

USB Flash Memory Drives come in many sizes and configurations. A sample USB Flash Memory Drive is shown below. For a list of approved USB Flash Memory Drives, see the Avidyne website at www.avidyne.com.
This section describes moving data from your Zip Drive or USB Flash Memory Drive to the EX5000.

If using a Zip Drive Dataloader:

- Allowing the portable Zip Drive to dangle by the cable can result in damage to your MFD, or the Drive, as well as a dataload failure.
- Do not insert the Zip disk into the Zip Drive until 5 seconds after power-up. The disk may be damaged if it is already in the Zip Drive when power is applied.
- After loading the CMax data into your MFD, wait until the disk is ejected from the drive before unplugging the Drive, or powering off the MFD. Unplugging the Zip Drive with the disk still engaged may cause damage to the disk.

If using a USB Flash Memory:

- Avidyne strongly suggests that, to avoid confusion, you reserve a USB Flash Memory Drive solely for EX5000 database transfers.
- After uploading data, do not remove the USB Flash Memory Drive until you see and acknowledge the regular EX5000 Startup screen.

Note: When removing the rubber cap from the data port, pull the cap gently from the top until it pops out. Make sure the cap is all the way out before plugging anything into the USB port.

Do not tug on the tab at the bottom of the cap; this could separate the cap from the EX5000 bezel.

13.1.1 Loading NavData (the Navigation Database)

Your new EX5000 will be pre-loaded with an up-to-date navigation database. Updates to the EX5000 NavData database are available from Jeppesen Sanderson, Inc. every 28 days and can be purchased either individually or on a subscription basis.
Once you have downloaded the NavData from your PC to either a Zip Disk Dataloader or USB Flash Memory Drive, as described in the Avidyne Data Update Guide, you can upload the data to the EX5000.

To load NavData to your EX5000:

1) Bring either the Zip Drive and disk or the USB Flash Memory Drive to the EX5000 at the aircraft.

2) Turn power OFF to the EX5000.

3) Connect the data source to the EX5000:
 - If using a USB Flash Memory Drive, plug it into the data port on the front of the EX5000.
 - If using a Zip Drive Dataloader, put the Zip disk into the Zip Drive. Connect one end of the cable to the Zip Drive and the other end to the EX5000 data port.

4) Turn on the master switch to power up the EX5000. The Dataloader Page displays.

5) Press Proceed. Do not turn off the EX5000 or disconnect the cable during a data load. The data load is complete when the regular startup Page displays.

6) After the startup Page displays, turn off power to the EX5000, remove your USB Flash Memory Drive or Zip Drive, and then turn the EX5000 power back on.

 This step ensures that all data has been checked in self-test and the MFD is ready for use.

7) Store the Zip Drive and cable or USB Flash Memory Drive in a safe place.

Note: Ensure that the Dataloader is supported and not dangling by the cable. Letting the Dataloader dangle can cause permanent damage to the data port. It can also cause an intermittent connection, which will result in an unsuccessful data update.

Note: If the regular start screen displays, the EX5000 did not detect the Zip Drive. Check the connection between the Zip Drive and the EX5000, then restart the procedure.
13.1.2 Loading CMax Chart Data

Once you have downloaded the CMax data from your PC to either a Zip Disk Dataloader or USB Flash Memory Drive, as described in the Avidyne Data Update Guide, you will need to upload the data to your EX5000.

➤ To load CMax Data to your EX5000:

1) With the MFD power OFF:
 - If using a USB Flash Memory Drive, plug it into the data port on the front of the EX5000.
 - If using a Zip Drive Dataloader, connect one end of the cable to the Zip Drive and the other end to the EX5000 data port. Do not insert the Zip disk into the Zip Drive until after you turn on the MFD (in step 2).

 Note: Ensure that the Dataloader is supported and not dangling by the cable. Letting the Dataloader dangle can cause permanent damage to the data port. It can also cause an intermittent connection, which will result in an unsuccessful data update.

2) Turn on the MFD. If you are using a Zip Drive, insert the Zip disk into the Zip Drive when the initial EX5000 logo screen displays.

3) The Dataloader Page displays.
 - If this is the first-ever update, you may see a caution that you are about to load older data than the MFD already contains. This is because the preloaded demo charts expire in the year 2020, so the caution message is normal.

 Press *Proceed* to start the chart data load.

4) The Dataloader Page shows the progress as it loads the data into the MFD. After loading the data, the Dataloader performs an integrity check on the data and displays a successful data load message if all data is valid.

5) When the operation is complete, the EX5000 will continue to the normal startup Page.
6) At this point, **turn off power to the EX5000, remove your USB Flash Memory Drive or Zip Drive, and then turn the EX5000 power back on.**

This step ensures that all data has been checked in self-test and the MFD is ready for use.

7) Confirm the valid dates of the Chart data as reported on the Startup Screen.

8) Go to the Chart Page and select a chart from an airport known to be in your subscription coverage area. Confirm that the chart is available.

9) Store the Zip Drive and cable or USB Flash Memory Drive in a safe place.

13.1.3 Downloading EMax Data

You can download the engine log files from the EX5000 using either a Zip Drive and Zip disk or a USB Flash Memory Drive.

Note: If any of the downloaded engine log files contains file format errors, you may receive an erroneous caution that the data transfer failed. Check your Zip disk or USB memory device for the transferred files.

➢ To download the stored engine data log files:

1) Turn power OFF to the EX5000

2) Connect the data source to the EX5000:
 - If using a USB Flash Memory Drive, plug it into the data port on the front of the EX5000.
 - If using a Zip Drive Dataloader, connect one end of the cable to the Zip Drive and the other end to the EX5000 data port.

Note: Ensure that the Dataloader is supported and not dangling by the cable. Letting the Dataloader dangle can cause permanent damage to the data port. It can also cause an intermittent connection, which will result in an unsuccessful data download.

3) Turn on power to the EX5000.

4) If using a Zip Drive, put a compatible blank disk into the Zip Drive when the EX5000 screen displays.
5) The EX5000 will display a message similar to the following:

Ready to Write Engine Data to Removable Media.

6) To begin the download, press *Proceed*. Do not turn off the EX5000 or disconnect the cable or USB Flash Memory Drive during data transfer.

To cancel the download, press *Cancel*.

7) When the data transfer is complete the regular start screen displays. If you are using a Zip Drive, the disk is automatically ejected from the Zip Drive.

8) At this point, turn off power to the EX5000, remove your USB Flash Memory Drive or Zip Drive, and then turn the EX5000 power back on. This step ensures that all data has been checked in self-test and the MFD is ready for use.

9) You can now bring the Zip Drive or USB Flash Memory Drive to your PC and download the EMax data. See the *Avidyne Data Update Guide* for more information.
13.2 Broadcast Datalink Service Purchase and Activation

To receive and display Broadcast Datalink weather and airspace, you must purchase service from XM WX Satellite Weather.

13.2.1 Creating Your XM WX Account
To create your account, you will need to provide the following information.

- Your Name
- Weather Service Package
- Broadcast Receiver ID Number (to locate this read below)
- Credit Card Information

Select the weather service you want based on the weather data products you would like to receive. See www.xmradio.com/weather/aviation.html for information on product offerings and pricing. To obtain the ID of the Broadcast receiver installed in your aircraft, open the EX5000 Trip Page. Press *Display* until “↓ Status” (Broadcast Datalink status) displays, and carefully record your XM Serial Number. (Note that serial numbers do not include the letters “I” (India), “O” (Oscar), “S” or “F”.)

To place your order, contact the XM WX Listener Care Center at 1-800-985-9200 and speak with an XM representative. Be prepared with all of the information above.

13.2.2 Activating Your Account
Your receiver is activated when XM sends a unique activation code to your receiver for 24 hours after your call. Your receiver will be enabled once it has received this code.

➤ To activate the XM WX Satellite Weather:

1) Move your aircraft outside and power on the EX5000 and receiver.

2) When your receiver receives the activation code the EX5000 begins to display weather data and indicates the XM weather
service you purchased on the Broadcast Status section of the Trip Page (in the Service Level field).

Note: The EX5000’s Service Level indication may take several flights to synchronize to the correct level but you will still receive and see the weather products you have purchased.

If 24 hours passes before you can get to your aircraft, contact the XM WX Listener Care Center again or go to www.xmradio.com/refresh. Enter your XM Radio ID number to refresh the activation code for an additional 24 hours.

For problems relating to your receiver, contact Heads Up Technologies:

E-mail: service@heads-up.com
Phone: (972) 980-4890 Ext. 142.
13.3 Cleaning the EX5000 Screen

If your EX5000 screen should become dirty due to fingerprints or dust, clean the screen using the following materials and methods:

- A clean, soft lint free cloth such as 3M Ultra-Brite Cloth # 2011 or similar.
- A cleaning solution composed of de-ionized water or isopropyl alcohol (IPA).

Always apply the cleaning solution directly onto the cloth. Never spray cleaner directly onto the screen.

Note: Use caution when using IPA as it is flammable.

Using any other chemicals or materials voids the warranty.

The EX5000 screen is made of a plastic film that is vulnerable to scratches, damage by sharp articles or improper cleaners. Use care when cleaning.
13.4 Sensor Status Block Symbols

Table 13.1 Sensor Status Block Symbols

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Type</th>
<th>Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>🟢</td>
<td>Traffic</td>
<td>A solid cyan symbol indicates that the sensor system is reporting a healthy status and is being displayed in the mode listed in the sensor status block.</td>
</tr>
<tr>
<td>⚡</td>
<td>Lightning</td>
<td>A hollow cyan symbol indicates that the function is reporting a healthy status, but is turned off for display on the Map Page.</td>
</tr>
<tr>
<td>🟢</td>
<td>Traffic</td>
<td>A solid yellow symbol indicates that the EX5000 is unable to display data from that particular sensor. This may be due to a communication error, the sensor is not healthy, or there is a configuration problem.</td>
</tr>
<tr>
<td>⚡</td>
<td>Lightning</td>
<td></td>
</tr>
<tr>
<td>🟢</td>
<td>Traffic</td>
<td>A hollow yellow symbol indicates that the function is not able to display data due to the same reasons as above, and is turned off from display on the Map Page.</td>
</tr>
</tbody>
</table>
Table 13.2 Broadcast Datalink Sensor Status Block (Optional)

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Status</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>A solid cyan arrow indicates that NEXRAD imagery is currently displaying on the Map Page, but the Broadcast signal is Marginal, Weak, or None.</td>
</tr>
<tr>
<td></td>
<td>An animated black and cyan arrow indicates that NEXRAD imagery is turned off for display on the Map Page, but the NEXRAD data is valid and the broadcast signal quality is Good.</td>
</tr>
<tr>
<td></td>
<td>An animated cyan arrow indicates that NEXRAD imagery is currently displaying on the Map Page. The broadcast signal quality is Good.</td>
</tr>
<tr>
<td></td>
<td>An empty (hollow) arrow indicates that NEXRAD imagery is turned off for display on the Map Page and the broadcast signal quality is Marginal, Weak, or None.</td>
</tr>
<tr>
<td></td>
<td>A solid yellow arrow indicates that NEXRAD imagery is selected for display, but is not shown because the NEXRAD data is invalid. The broadcast signal quality is Marginal, Weak, or None.</td>
</tr>
<tr>
<td></td>
<td>An animated black and yellow arrow indicates that NEXRAD imagery is turned off for display on the Map Page and the NEXRAD data is invalid. The broadcast signal quality is Marginal, Weak, or None.</td>
</tr>
<tr>
<td></td>
<td>An animated yellow arrow indicates that NEXRAD imagery is selected for display, but it is not shown because the NEXRAD data is invalid. The broadcast signal quality is Good.</td>
</tr>
</tbody>
</table>
13.5 Map Symbols

The EX5000’s Map uses symbols contained in its navigational database, based on your navigational mode and flight situation. Map can display the following database items:

- Airports
- Navaids (VORs, NDBs and Waypoints)
- Airways (Victor and jet)
- Intersections, waypoints and other named fixes
- Class B and Class C controlled airspace
- Tower Zone Airspace
- Obstacles (>200’ AGL)
- Certain classes of special use airspace (Prohibited, Restricted, Warning, Alert and Military Operating Areas)

Navigational symbols used by Map are shown in this section.

Table 13.3 Map Symbols – Airports

<table>
<thead>
<tr>
<th>Airport Type</th>
<th>Surface</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Hard</td>
</tr>
<tr>
<td>Towered</td>
<td>[Symbol]</td>
</tr>
<tr>
<td>Towered</td>
<td>[Symbol]</td>
</tr>
<tr>
<td>Non-Towered</td>
<td>[Symbol]</td>
</tr>
<tr>
<td>Non-Towered</td>
<td>[Symbol]</td>
</tr>
</tbody>
</table>

Notes:
- The larger airport symbols are displayed as the map scales are reduced to the smaller ranges.
- Airport types are derived directly from the Jeppesen navigation database.
Table 13.4 Map Symbols – Navigational Fixes

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Item</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>![Symbol]</td>
<td>NDB</td>
<td>All NDBs</td>
</tr>
<tr>
<td>![Symbol]</td>
<td>VOR</td>
<td>All VORs</td>
</tr>
<tr>
<td>![Symbol]</td>
<td>Intersection</td>
<td>Terminal, Jet, and Victor airway waypoints (intersections)</td>
</tr>
</tbody>
</table>

Table 13.5 Map Symbols – Traffic Symbols

<table>
<thead>
<tr>
<th>Non-TAS Symbol</th>
<th>TIS Symbol</th>
<th>Type</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>![Symbol]</td>
<td>![Symbol]</td>
<td>Traffic Alert (TA)</td>
<td>Traffic within the alert zone defined by the traffic sensor.</td>
</tr>
<tr>
<td>![Symbol]</td>
<td>![Symbol]</td>
<td>Proximate Traffic</td>
<td>Traffic close to your position but not within an alert zone.</td>
</tr>
<tr>
<td>![Symbol]</td>
<td>![Symbol]</td>
<td>Other Traffic</td>
<td>Traffic detected by the traffic sensor, but determined not to be a current threat.</td>
</tr>
</tbody>
</table>

Table 13.6 Map Symbols – Other

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Item</th>
<th>Symbol</th>
<th>Item</th>
</tr>
</thead>
<tbody>
<tr>
<td>![Symbol]</td>
<td>Flight Plan (active leg)</td>
<td>![Symbol]</td>
<td>Single Low Obstacle >= 200° AGL < 1000° AGL</td>
</tr>
<tr>
<td>![Symbol]</td>
<td>Flight Plan (inactive leg)</td>
<td>![Symbol]</td>
<td>Low Obstacles within 1NM of each other >= 200° AGL < 1000° AGL</td>
</tr>
<tr>
<td>![Symbol]</td>
<td>Map Orientation</td>
<td>![Symbol]</td>
<td>Single Obstacle >= 1000° AGL</td>
</tr>
<tr>
<td>![Symbol]</td>
<td>Ownship Symbol</td>
<td>![Symbol]</td>
<td>Obstacles within 1NM of each other >= 1000° AGL</td>
</tr>
<tr>
<td>![Symbol]</td>
<td>Flight Plan, Course Waypoints</td>
<td>![Symbol]</td>
<td>Interstate Highway</td>
</tr>
</tbody>
</table>
13.6 Line Styles

Table 13.7 Airspace and Airways Lines

<table>
<thead>
<tr>
<th>Item</th>
<th>Color</th>
<th>Line</th>
<th>Label</th>
</tr>
</thead>
<tbody>
<tr>
<td>Class B</td>
<td>Blue</td>
<td></td>
<td>Elevation</td>
</tr>
<tr>
<td>Class C</td>
<td>Magenta</td>
<td></td>
<td>Elevation</td>
</tr>
<tr>
<td>Tower Zone Airspace</td>
<td>Dashed Blue</td>
<td></td>
<td>None</td>
</tr>
<tr>
<td>Victor Airways</td>
<td>Blue grey</td>
<td></td>
<td>ID Label</td>
</tr>
<tr>
<td>Jet Airways</td>
<td>Blue grey</td>
<td></td>
<td>ID Label</td>
</tr>
<tr>
<td>Prohibited, Restricted</td>
<td>Red</td>
<td></td>
<td>ID Label</td>
</tr>
<tr>
<td>Warning, Alert, MOA</td>
<td>Yellow</td>
<td></td>
<td>ID Label</td>
</tr>
<tr>
<td>TFR</td>
<td>Red, triple thickness</td>
<td></td>
<td>ID Label</td>
</tr>
</tbody>
</table>

Note: For adjacent or overlaying types of Special Use Airspace (e.g. Restricted Areas or Prohibited Areas within larger MOAs), some masking of the border lines may occur. See current aeronautical charts for accurate boundaries.

Table 13.8 AIRMET and SIGMET Boundary Lines

<table>
<thead>
<tr>
<th>Line Color</th>
<th>Type</th>
<th>Label</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bright blue</td>
<td>Mountain AIRMET</td>
<td>MTN</td>
</tr>
<tr>
<td>Dark yellow</td>
<td>IFR AIRMET</td>
<td>IFR</td>
</tr>
<tr>
<td>Orange</td>
<td>Turbulence AIRMET</td>
<td>TURB</td>
</tr>
<tr>
<td>Blue</td>
<td>Icing AIRMET</td>
<td>ICE</td>
</tr>
<tr>
<td>Dark Red</td>
<td>SIGMET AIRMET</td>
<td>SIG</td>
</tr>
<tr>
<td>Blue grey</td>
<td>Convective SIGMET</td>
<td>CSIG</td>
</tr>
</tbody>
</table>
13.7 Data Blocks

Table 13.9 Data Block Information

<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
<th>Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>TO WPT</td>
<td>Name of, bearing and distance to the “To” waypoint in the active flight plan. The bearing is from your present position directly to the fix. If you are off course, it will differ from your planned course. Distance is measured direct. Also displays ETE (Estimated Time En route).</td>
<td>Name (5 characters), Bearing (1 to 360 degrees), Distance (0.0 unlimited NM), ETE (HH:MM:SS)</td>
</tr>
<tr>
<td>NEXT WPT</td>
<td>Name of, bearing and distance to the “To” waypoint in the active flight plan. Also displays ETE (Estimated Time En route).</td>
<td>Name (5 characters), Bearing (1 to 360 degrees), Distance (0.0 unlimited NM), ETE (HH:MM:SS)</td>
</tr>
<tr>
<td>DEST WPT</td>
<td>Name of and distance to the final destination waypoint in system distance units. Distance is measured along planned route.</td>
<td>Name (5 characters), Distance (0.0 unlimited NM)</td>
</tr>
<tr>
<td>NRST ARPT</td>
<td>Identifier of, bearing and distance to the nearest airport.</td>
<td>Name (5 characters)</td>
</tr>
<tr>
<td>LAT/LON</td>
<td>Current latitude and longitude in degrees and decimal minutes.</td>
<td>N/S 0 to 90° 0’ E/W 0 to 180° 0’</td>
</tr>
<tr>
<td>BARO ALT</td>
<td>Barometric Altitude. May not be available depending on aircraft configuration.</td>
<td>Based on data from FMS (if available) or GPS (see Note)</td>
</tr>
<tr>
<td>GND SPD</td>
<td>Current ground speed in system speed units.</td>
<td>0.0 to 999.9 knots</td>
</tr>
<tr>
<td>TRUE AIRSPD</td>
<td>True Airspeed. May not be available depending on aircraft configuration.</td>
<td>From FMS</td>
</tr>
<tr>
<td>UTC TIME</td>
<td>UTC (Greenwich or “Zulu”) time.</td>
<td>0 to 23h 59m 59s</td>
</tr>
<tr>
<td>LOCAL TIME</td>
<td>Local data and time. Derived from UTC time with time zone setting applied.</td>
<td>0 to 23h 59m 59s</td>
</tr>
<tr>
<td>Blank</td>
<td>No data block.</td>
<td></td>
</tr>
</tbody>
</table>

Note: The Baro Altitude may be received from the FMS or GPS (via 429). The FMS/GPS calculates the altitude based on the barometric pressure entered into the FMS by the pilot and pressure altitude received from another source. This display verifies what has been put into the FMS/GPS. Do not rely on this display for terrain separation.
Table 13.10 Engine Instrument Data Block Information

<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
<th>Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>POWER</td>
<td>RPM</td>
<td>0 - 3,500 RPM</td>
</tr>
<tr>
<td></td>
<td>Manifold Pressure (MP)</td>
<td>0- 36 Inches of Hg</td>
</tr>
<tr>
<td></td>
<td>Percent Power (%)</td>
<td>0 - 200%</td>
</tr>
<tr>
<td>FUEL</td>
<td>Fuel Flow</td>
<td>0.0 to 44 GPH</td>
</tr>
<tr>
<td></td>
<td>Gallons Used</td>
<td>0.0 to tank size</td>
</tr>
<tr>
<td>FUEL RMNG</td>
<td>Fuel Remaining</td>
<td>0.0 to tank size</td>
</tr>
<tr>
<td></td>
<td>Time Remaining</td>
<td>Time Remaining</td>
</tr>
<tr>
<td>OIL</td>
<td>Oil Temperature</td>
<td>-20 - 260º</td>
</tr>
<tr>
<td></td>
<td>Oil Pressure</td>
<td>0 - 150 PSI</td>
</tr>
<tr>
<td>LEAN STATE</td>
<td>Lean setting status:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>■ Best Economy</td>
<td>Economy</td>
</tr>
<tr>
<td></td>
<td>■ Best Power</td>
<td>Power</td>
</tr>
<tr>
<td></td>
<td>■ In process of leaning</td>
<td>Leaning...</td>
</tr>
<tr>
<td></td>
<td>■ Leaning interrupted</td>
<td>Incomplete</td>
</tr>
<tr>
<td></td>
<td>■ Power change after lean</td>
<td>Pwr Change</td>
</tr>
<tr>
<td></td>
<td>■ Throttle change after lean</td>
<td>FF Change</td>
</tr>
<tr>
<td></td>
<td>■ Not leaned</td>
<td>-- (Blank)</td>
</tr>
<tr>
<td>OAT</td>
<td>Outside Air Temperature</td>
<td>-40ºF to 212º F</td>
</tr>
<tr>
<td></td>
<td></td>
<td>-40ºC to 100ºC</td>
</tr>
<tr>
<td>Electrical</td>
<td>Bus Voltage (Volts) and</td>
<td>0 - 36 VDC</td>
</tr>
<tr>
<td></td>
<td>Alternator outputs (Amps)</td>
<td>0 - 99 A</td>
</tr>
<tr>
<td></td>
<td>Battery Output (Amps)</td>
<td>-99 - +100A</td>
</tr>
</tbody>
</table>
13.8 TAWS Messages

Table 13.11 TAWS Messages

<table>
<thead>
<tr>
<th>TAWS Messages & Colors</th>
<th>Meaning</th>
<th>Recommended Pilot Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>Caution Obstacle</td>
<td>EGPWS Obstacle caution.</td>
<td>Fly to avoid obstacle.</td>
</tr>
<tr>
<td>Caution Terrain</td>
<td>EGPWS Terrain caution.</td>
<td>Fly to avoid terrain.</td>
</tr>
<tr>
<td>OBSTACLE AHEAD, PULL UP</td>
<td>EGPWS Obstacle Warning.</td>
<td>Pull up to avoid obstacle.</td>
</tr>
<tr>
<td>TERRAIN AHEAD, PULL UP</td>
<td>EGPWS Obstacle Warning.</td>
<td>Pull up to avoid terrain.</td>
</tr>
<tr>
<td>TAWS Display Initializing</td>
<td>During its startup phase, this Message displays. While TAWS display is initializing, the TAWS Page is painted with magenta dots overlaid by the large text annunciation TAWS DISPLAY INITIALIZING.</td>
<td>The message should clear spontaneously. If the test fails or does not terminate refer to the EGPWS Pilot’s Guide.</td>
</tr>
<tr>
<td>TAWS Sensor Self Test</td>
<td>The EGPWS is performing a Self-Test. A distinctive color test pattern will be displayed. The large text annunciation, “TAWS SENSOR SELF-TEST” is presented over the test pattern. The text will remain until the self-test is finished.</td>
<td>If the test fails or does not terminate refer to the EGPWS Pilot’s Guide.</td>
</tr>
</tbody>
</table>
Table 13.11 TAWS Messages (Continued)

<table>
<thead>
<tr>
<th>TAWS Messages & Colors</th>
<th>Meaning</th>
<th>Recommended Pilot Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>TAWS Display Inhibited</td>
<td>When you inhibit EGPWS alerts by means of the separate EGPWS control panel, the TAWS Display Page is painted with magenta dots overlaid by the large text annunciation TAWS DISPLAY INHIBITED.</td>
<td>Check to see if the control settings are correct. If the EGPWS is not inhibited and if this message persists, contact an Avidyne Authorized Entegra Service Center.</td>
</tr>
<tr>
<td>TAWS Display Unavailable</td>
<td>The EGPWS is unable to supply the EX5000 with a reliable TAWS display, probably because one of its inputs from another device in the aircraft is incorrect or unreliable. When the TAWS Display is unavailable due to this condition, the TAWS Display Page is painted with magenta dots overlaid by the large text annunciation TAWS DISPLAY UNAVAILABLE.</td>
<td>Check to see that EGPWS is powered up. Have configuration checked at an Avidyne Authorized Entegra Service Center.</td>
</tr>
<tr>
<td>TAWS Not Communicating</td>
<td>Indicates that the EGPWS sensor is powered down or incorrectly attached to the EX5000. Whenever the TAWS Display is unavailable due to this failure, the TAWS Display Page is painted with magenta dots overlaid by the large text annunciation TAWS NOT COMMUNICATING.</td>
<td>Check to see that EGPWS is powered up. Have configuration checked at an Avidyne Authorized Entegra Service Center.</td>
</tr>
</tbody>
</table>
13.9 Nav Messages

Table 13.12 Nav Messages

<table>
<thead>
<tr>
<th>NAV Messages and Colors</th>
<th>Meaning</th>
<th>Acknowledge:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nav Source Data is valid</td>
<td>GPS/FMS indicates that the computed position data is valid.</td>
<td></td>
</tr>
<tr>
<td>Nav Source Data is NOT valid (err=x)</td>
<td>Your GPS/FMS has not computed a valid position or is not supplying valid data. Flight Plan will not be presented on the Radar display.</td>
<td></td>
</tr>
<tr>
<td>Nav Source: Can't Open Port</td>
<td>The GPS/FMS interface cannot open the assigned port. Generally indicates a configuration error.</td>
<td></td>
</tr>
<tr>
<td>Nav Source Reconnecting…</td>
<td>EX5000 is attempting to reconnect to the port that is connected to the GPS/FMS.</td>
<td></td>
</tr>
<tr>
<td>Nav Source is Not Communicating</td>
<td>EX5000 does not detect any data being sent from the GPS/FMS.</td>
<td></td>
</tr>
<tr>
<td>Nav Source Data Format Error</td>
<td>Invalid data is coming from your GPS/FMS. If persistent, generally indicates a configuration error.</td>
<td></td>
</tr>
<tr>
<td>Heading Data is NOT Valid</td>
<td>GPS/FMS is configured as the Map heading source and that data ceases to be available or becomes invalid.</td>
<td></td>
</tr>
<tr>
<td>Heading Data is Valid</td>
<td>GPS navigator is configured as the Map heading source and that data becomes valid following an acknowledgement of an invalid message.</td>
<td></td>
</tr>
</tbody>
</table>

Check GPS for valid position. Have a Service Center check GPS/FMS and installation. Have an Avidyne Authorized Entegra Service Center check configuration. Check that GPS is on. Have an Avidyne Authorized Entegra Service Center check configuration.
13.10 Traffic Messages

Table 13.13 Traffic Messages

<table>
<thead>
<tr>
<th>Traffic Messages & Colors</th>
<th>Meaning</th>
<th>Recommended Pilot Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>Traffic Sensor is Operating Normally</td>
<td>Traffic sensor is operating in a normal state from a recoverable fault that was previously acknowledged.</td>
<td>Acknowledge.</td>
</tr>
<tr>
<td>Traffic <Bearing> / <Distance> / <Relative Altitude></td>
<td>Traffic Advisory</td>
<td>Acknowledge to go to Dedicated Traffic Page and begin looking for traffic.</td>
</tr>
<tr>
<td></td>
<td>Traffic Advisories with no bearing information.</td>
<td>Acknowledge to go to Dedicated Traffic Page to look for traffic.</td>
</tr>
<tr>
<td>Traffic <Distance> / <Relative Altitude></td>
<td>Traffic Advisories with no relative altitude information.</td>
<td>Acknowledge to go to Dedicated Traffic Page to look for traffic.</td>
</tr>
<tr>
<td>Traffic <Bearing> / <Distance></td>
<td>Traffic Advisories with no bearing and no relative altitude information.</td>
<td>Acknowledge to go to Dedicated Traffic Page and begin looking for traffic.</td>
</tr>
<tr>
<td>Traffic Sensor is in Stand- By</td>
<td>EX5000 receives a “Stand-By” transmission from the traffic sensor. Press Traffic to select a traffic mode.</td>
<td>If message persists, have an Avidyne Authorized Entegra Service Center check configuration.</td>
</tr>
<tr>
<td>Traffic Sensor is in Self-Test</td>
<td>Traffic sensor is in self-test mode.</td>
<td>Acknowledge.</td>
</tr>
<tr>
<td>Traffic Sensor is Not Communicating</td>
<td>Traffic sensor is not transmitting data.</td>
<td>Check that Traffic Sensor is on.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Have configuration checked at an Avidyne Authorized Entegra Service Center.</td>
</tr>
</tbody>
</table>
Table 13.13 Traffic Messages (Continued)

<table>
<thead>
<tr>
<th>Traffic Messages & Colors</th>
<th>Meaning</th>
<th>Recommended Pilot Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>TCAD Altitude Unavailable</td>
<td>TCAD sensor is not receiving altitude information.</td>
<td>Have an Avidyne Authorized Entegra Service Center check configuration.</td>
</tr>
<tr>
<td>Traffic Heading Source Failed</td>
<td>TAS is configured as the Map Heading source and a “fatal heading fault” is received.</td>
<td>Have an Avidyne Authorized Entegra Service Center check configuration.</td>
</tr>
<tr>
<td>Traffic Heading Source is Valid</td>
<td>Traffic sensor is configured as the Map Heading source and is valid.</td>
<td>Acknowledge.</td>
</tr>
</tbody>
</table>
13.11 Lightning Messages

Table 13.14 Lightning Messages

<table>
<thead>
<tr>
<th>Lightning Messages & Colors</th>
<th>Meaning</th>
<th>Recommended Pilot Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lightning Sensor is Operating Normally</td>
<td>Lightning source is operating in a normal state from a recoverable fault that was previously acknowledged.</td>
<td>Acknowledge.</td>
</tr>
<tr>
<td>Lightning Sensor is in Noise- Monitor Mode</td>
<td>Lightning source is in Noise- Monitor Mode.</td>
<td>Have configuration checked at an Avidyne Authorized Entegra Service Center.</td>
</tr>
<tr>
<td>Lightning Sensor is in Demo Mode</td>
<td>Lightning source is in Demo Mode.</td>
<td>Have configuration checked at an Avidyne Authorized Entegra Service Center.</td>
</tr>
<tr>
<td>Lightning Sensor is in Test Mode</td>
<td>Lightning sensor in a self-test mode.</td>
<td>Acknowledge.</td>
</tr>
<tr>
<td>Lightning Sensor ERROR</td>
<td>EX5000 receives a “recoverable fault” notification.</td>
<td>Cycle sensor power.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Have configuration checked at an Avidyne Authorized Entegra Service Center.</td>
</tr>
<tr>
<td>Lightning Sensor has FAILED</td>
<td>EX5000 receives a “fatal fault” notification.</td>
<td>Have configuration checked at an Avidyne Authorized Entegra Service Center.</td>
</tr>
<tr>
<td>Lightning Sensor is Not Communicating</td>
<td>EX5000 receiving no data from the lightning sensor.</td>
<td>Check that sensor is on.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Have configuration checked at an Avidyne Authorized Entegra Service Center.</td>
</tr>
<tr>
<td>Lightning Ahead</td>
<td>Stormscope is indicating discharge activity horizontally within ± 22° of the aircraft nose and within 75nm.</td>
<td>Determine location of lightning and avoid.</td>
</tr>
</tbody>
</table>
Table 13.14 Lightning Messages (Continued)

<table>
<thead>
<tr>
<th>Lightning Messages & Colors</th>
<th>Meaning</th>
<th>Recommended Pilot Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lightning Heading Source Failed</td>
<td>Stormscope is configured as a heading source and a “fatal heading fault” is received.</td>
<td>Have configuration checked at an Avidyne Authorized Entegra Service Center.</td>
</tr>
<tr>
<td>Lightning Heading Source OK</td>
<td>Stormscope is configured with heading input.</td>
<td>Acknowledge.</td>
</tr>
<tr>
<td>Lightning Antenna Location Changed</td>
<td>Stormscope antenna location disagrees with EX5000 setting.</td>
<td>Have configuration checked at an Avidyne Authorized Entegra Service Center.</td>
</tr>
</tbody>
</table>
13.12 Engine Messages

Note: For messages with yellow and red ranges, if a caution (yellow) message has been acknowledged and removed, transition to the warning (red) range displays a new message. For red warning messages that have been acknowledged and removed, if the value moves back into the yellow range, the EX5000 does not post a new message.

Note: Engine alert messages only display on aircraft that use the Entegra PFD and MFD for primary engine indicators.

Table 13.15 Engine Messages

<table>
<thead>
<tr>
<th>Engine Messages & Colors</th>
<th>Meaning</th>
<th>Recommended Pilot Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>Engine Sensor Unit is Operating Normally</td>
<td>Engine DAU or SIU is operating in a normal state from a recoverable fault that was previously acknowledged.</td>
<td>Acknowledge.</td>
</tr>
<tr>
<td>Engine Sensor Unit is Not Communicating</td>
<td>EX5000 receiving no data from Engine DAU or SIU.</td>
<td>Check that breaker is correctly set. Have configuration checked at an Avidyne Authorized Entegra Service Center.</td>
</tr>
<tr>
<td>Engine Sensor Unit Configuration Error</td>
<td>EX5000 receiving invalid data from the Engine DAU or SIU.</td>
<td>Have configuration checked at an Avidyne Authorized Entegra Service Center.</td>
</tr>
<tr>
<td>Check RPM</td>
<td>EX5000 has detected RPM outside the normal operating range.</td>
<td>Acknowledge. Examine RPM indicator on Engine Page. Take corrective action as required.</td>
</tr>
<tr>
<td>Check Oil Temp</td>
<td>EX5000 has detected an oil temperature outside the normal operating range.</td>
<td>Acknowledge. Examine Oil Temperature on Engine Page. Take corrective action and land immediately, if necessary.</td>
</tr>
<tr>
<td>Engine Messages & Colors</td>
<td>Meaning</td>
<td>Recommended Pilot Action</td>
</tr>
<tr>
<td>--------------------------</td>
<td>---------</td>
<td>--------------------------</td>
</tr>
<tr>
<td>Check Oil Press (Not shown when RPM > 1400)</td>
<td>EX5000 has detected an oil pressure outside the normal operating range. Yellow = Caution, Red = Warning.</td>
<td>Acknowledge. Examine Oil Pressure on Engine Page. Take corrective action and land immediately, if necessary.</td>
</tr>
<tr>
<td>Check CHT</td>
<td>EX5000 has detected a cylinder head temperature higher than the normal operating range. Yellow = Caution, Red = Warning.</td>
<td>Acknowledge. Examine CHT indicators on Engine Page. Take corrective action as required.</td>
</tr>
<tr>
<td>Check Main Bus (Not shown when RPM < 1400)</td>
<td>EX5000 has detected main bus voltage outside the normal operating range.</td>
<td>Acknowledge. Examine Main Bus indicator on Engine Page. Take corrective action and land as soon as practical.</td>
</tr>
<tr>
<td>Check Essential Bus (Not shown when RPM < 1400)</td>
<td>EX5000 has detected essential bus voltage outside the normal operating range.</td>
<td>Acknowledge. Examine Essential Bus indicator on Engine Page. Take corrective action and land as soon as practical.</td>
</tr>
<tr>
<td>Check ALT 1 (Not shown when RPM < 1400)</td>
<td>EX5000 has detected Alternator 1 amperage lower than normal operating range.</td>
<td>Acknowledge. Examine ALT 1 indicator on Engine Page. Take corrective action as required.</td>
</tr>
<tr>
<td>Check ALT 2 (Not shown when RPM < 2000)</td>
<td>EX5000 has detected Alternator 2 amperage lower than normal operating range.</td>
<td>Acknowledge. Examine ALT 2 indicator on Engine Page. Take corrective action as required.</td>
</tr>
<tr>
<td>Check BATT 1</td>
<td>EX5000 has detected extended discharge from BATT 1.</td>
<td>Acknowledge. Examine BATT 1 indicator on Engine Page. Take corrective action as required.</td>
</tr>
<tr>
<td>Check Fuel Flow</td>
<td>EX5000 has detected greater than expected fuel flow.</td>
<td>Acknowledge. Examine the Fuel Flow and Fuel Remaining indicators on Engine Page. Take corrective action and land as soon as practical.</td>
</tr>
</tbody>
</table>
Table 13.15 Engine Messages (Continued)

<table>
<thead>
<tr>
<th>Engine Messages & Colors</th>
<th>Meaning</th>
<th>Recommended Pilot Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>Check Fuel Remaining</td>
<td>EX5000 has detected low remaining fuel. Yellow = Caution, Red = Warning.</td>
<td>Acknowledge. Examine the Fuel Remaining indicator on Engine Page. Take corrective action and land as soon as practical. If red, prepare to land immediately!</td>
</tr>
<tr>
<td>Alternate Induction Door Open</td>
<td>Turbonormalized engines only. The engine controller has automatically opened the alternate induction door, because a blockage or restriction of the normal air intake is detected</td>
<td>Acknowledge. Consult the engine or aircraft POH. Have the intake inspected.</td>
</tr>
<tr>
<td>Check Manifold Pressure</td>
<td>Turbonormalized engines only. MFD has detected Manifold Pressure outside the normal operating range.</td>
<td>Examine Manifold Pressure indicator on Engine Page. Adjust engine power setting as required.</td>
</tr>
<tr>
<td>Check TIT</td>
<td>Turbonormalized engines only. MFD has detected TIT outside the normal operating range.</td>
<td>Examine TIT indicator on Engine Page. Take corrective action as required.</td>
</tr>
</tbody>
</table>
13.12.1 PFD Messages

Table 13.16 PFD Messages

<table>
<thead>
<tr>
<th>PFD Messages & Colors</th>
<th>Meaning</th>
<th>Recommended Pilot Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>PFD is Operating Normally</td>
<td>PFD is operating in a normal state from a recoverable fault that was previously acknowledged.</td>
<td>Acknowledge.</td>
</tr>
<tr>
<td>PFD is Not Communicating</td>
<td>EX5000 is receiving no data from PFD</td>
<td>Have configuration checked at an Avidyne Authorized Entegra Service Center.</td>
</tr>
</tbody>
</table>
13.13 Broadcast Datalink Messages

Table 13.17 Broadcast Datalink Messages

<table>
<thead>
<tr>
<th>Datalink Messages & Colors</th>
<th>Meaning</th>
<th>Recommended Pilot Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>Broadcast Receiver Not Communicating</td>
<td>EX5000 has received no data from the broadcast receiver for 10 minutes</td>
<td>Have the wiring from the broadcast receiver to the EX5000 inspected.</td>
</tr>
<tr>
<td>Broadcast Antenna is Disconnected</td>
<td>The Broadcast Datalink antenna or cable is not properly connected to the receiver.</td>
<td>Have the Broadcast antenna connection inspected.</td>
</tr>
<tr>
<td>Broadcast Receiver is Operating Normally</td>
<td>The Broadcast receiver is operating in a normal state from a recoverable fault that was previously acknowledged.</td>
<td>Acknowledge.</td>
</tr>
<tr>
<td>Broadcast Data not yet received</td>
<td>The EX5000 did not receive Broadcast weather data within the first 10 minutes after power-on.</td>
<td>Monitor Broadcast system during flight, have system inspected if performance does not improve.</td>
</tr>
<tr>
<td>Broadcast NEXRAD not yet received</td>
<td>The EX5000 did not receive NEXRAD data within the first 15 minutes after power-on.</td>
<td>Monitor Broadcast system during flight, have system inspected if performance does not improve.</td>
</tr>
<tr>
<td>Broadcast METARs not yet received</td>
<td>The EX5000 did not receive METAR data within the first 15 minutes after power-on.</td>
<td>Monitor Broadcast system during flight, have system inspected if performance does not improve.</td>
</tr>
<tr>
<td>Broadcast Storm Cells not yet received</td>
<td>The EX5000 did not receive Storm Cell data within the first 15 minutes after power-on.</td>
<td>Monitor Broadcast system during flight, have system inspected if performance does not improve.</td>
</tr>
<tr>
<td>Broadcast Winds Aloft not yet received</td>
<td>The EX5000 did not receive Winds Aloft data within the first 15 minutes after power-on.</td>
<td>Monitor Broadcast system during flight, have system inspected if performance does not improve.</td>
</tr>
<tr>
<td>Datalink Messages & Colors</td>
<td>Meaning</td>
<td>Recommended Pilot Action</td>
</tr>
<tr>
<td>---------------------------</td>
<td>---------</td>
<td>-------------------------</td>
</tr>
<tr>
<td>Broadcast TAFs not yet received</td>
<td>The EX5000 did not receive TAF data within the first 15 minutes after power-on.</td>
<td>Monitor Broadcast system during flight, have system inspected if performance does not improve.</td>
</tr>
<tr>
<td>Broadcast Freezing Level not yet received</td>
<td>The EX5000 did not receive Freezing Level data within the first 15 minutes after power-on.</td>
<td>Monitor Broadcast system during flight, have system inspected if performance does not improve.</td>
</tr>
<tr>
<td>Broadcast AIRMETs not yet received</td>
<td>The EX5000 did not receive AIRMET data within the first 15 minutes after power-on.</td>
<td>Monitor Broadcast system during flight, have system inspected if performance does not improve.</td>
</tr>
<tr>
<td>Broadcast SIGMETs not yet received</td>
<td>The EX5000 did not receive SIGMET data within the first 15 minutes after power-on.</td>
<td>Monitor Broadcast system during flight, have system inspected if performance does not improve.</td>
</tr>
<tr>
<td>Broadcast TFRs not yet received</td>
<td>The EX5000 did not receive TFR data within the first 15 minutes after power-on.</td>
<td>Monitor Broadcast system during flight, have system inspected if performance does not improve.</td>
</tr>
<tr>
<td>Broadcast Lightning not yet received</td>
<td>The EX5000 did not receive Lightning data within the first 15 minutes after power-on.</td>
<td>Monitor Broadcast system during flight, have system inspected if performance does not improve.</td>
</tr>
<tr>
<td>Broadcast NEXRAD > 120 min</td>
<td>Broadcast NEXRAD data age since creation is greater than 120 minutes. NEXRAD data will not display.</td>
<td>Monitor Broadcast system during flight, have system inspected if performance does not improve.</td>
</tr>
</tbody>
</table>
Table 13.17 Broadcast Datalink Messages (Continued)

<table>
<thead>
<tr>
<th>Datalink Messages & Colors</th>
<th>Meaning</th>
<th>Recommended Pilot Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>Broadcast METARs > 120 min</td>
<td>Broadcast METAR data age since creation is greater than 120 minutes. METAR data will not display.</td>
<td>Monitor Broadcast system during flight, have system inspected if performance does not improve.</td>
</tr>
<tr>
<td>Broadcast AIRMETs > 90 min</td>
<td>Broadcast AIRMET data age since creation is greater than 120 minutes. AIRMET data will not display.</td>
<td>Monitor Broadcast system during flight, have system inspected if performance does not improve.</td>
</tr>
<tr>
<td>Broadcast SIGMETs > 90 min</td>
<td>Broadcast SIGMET data age since creation is greater than 120 minutes. SIGMET data will not display.</td>
<td>Monitor Broadcast system during flight, have system inspected if performance does not improve.</td>
</tr>
<tr>
<td>Broadcast TFRs > 90 min</td>
<td>Broadcast TFR data age since creation is greater than 90 minutes. TFR data will not display.</td>
<td>Monitor Broadcast system during flight, have system inspected if performance does not improve.</td>
</tr>
<tr>
<td>Broadcast Storm Cells > 20 min</td>
<td>Broadcast Storm Cell data age since creation is greater than 20 minutes. Storm Cells will not display.</td>
<td>Monitor Broadcast system during flight, have system inspected if performance does not improve.</td>
</tr>
</tbody>
</table>
Table 13.17 Broadcast Datalink Messages (Continued)

<table>
<thead>
<tr>
<th>Datalink Messages & Colors</th>
<th>Meaning</th>
<th>Recommended Pilot Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>Broadcast Winds Aloft > 90 min</td>
<td>Broadcast Winds data age since creation is greater than 90 minutes. Winds data will not display.</td>
<td>Monitor Broadcast system during flight, have system inspected if performance does not improve.</td>
</tr>
<tr>
<td>Broadcast TAFs > 90 min</td>
<td>Broadcast TAF data age since creation is greater than 90 minutes. TAFs will not display.</td>
<td>Monitor Broadcast system during flight, have system inspected if performance does not improve.</td>
</tr>
<tr>
<td>Broadcast Freezing Level > 90 min</td>
<td>Broadcast Freezing Level data age since creation is greater than 90 minutes. Freezing Level data will not display.</td>
<td>Monitor Broadcast system during flight, have system inspected if performance does not improve.</td>
</tr>
</tbody>
</table>
13.14 Abbreviations and Definitions

The following avionics abbreviations and definitions are used in this manual:

Table 13.18 Avionics Abbreviations and Definitions

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>AGL</td>
<td>Above Ground Level</td>
</tr>
<tr>
<td>AIM</td>
<td>Aeronautical Information Manual</td>
</tr>
<tr>
<td>AIRMET</td>
<td>AIRman's METeorological advisory</td>
</tr>
<tr>
<td>CDI</td>
<td>Course Deviation Indicator</td>
</tr>
<tr>
<td>CONUS</td>
<td>Continental United States</td>
</tr>
<tr>
<td>EGPWS</td>
<td>Enhanced Ground Proximity Warning System</td>
</tr>
<tr>
<td>GPS</td>
<td>Global Positioning System</td>
</tr>
<tr>
<td>IFR</td>
<td>Instrument Flight Rules</td>
</tr>
<tr>
<td>ILS</td>
<td>Instrument Landing System</td>
</tr>
<tr>
<td>Jetways</td>
<td>Above 18000 ft MSL</td>
</tr>
<tr>
<td>METAR</td>
<td>Meteorological Aerodrome Report</td>
</tr>
<tr>
<td>MFD</td>
<td>Multi-Function Display</td>
</tr>
<tr>
<td>MSL</td>
<td>Mean Sea Level</td>
</tr>
<tr>
<td>NDB</td>
<td>Non-Directional Beacon</td>
</tr>
<tr>
<td>NEXRAD</td>
<td>Next Generation Radar. A network of advanced Doppler radars that operates throughout the US.</td>
</tr>
<tr>
<td>NM</td>
<td>Nautical Mile</td>
</tr>
<tr>
<td>NOTAM</td>
<td>NOTices to AirMen - Important information provided by the FAA or similar international organizations.</td>
</tr>
<tr>
<td>PFD</td>
<td>Primary Flight Display</td>
</tr>
<tr>
<td>SIGMET</td>
<td>SIgnificant METeorological advisory</td>
</tr>
<tr>
<td>SUA</td>
<td>Special Use Airspace</td>
</tr>
<tr>
<td>TA</td>
<td>Traffic Advisory</td>
</tr>
<tr>
<td>TACAN</td>
<td>Tactical Air Navigation</td>
</tr>
<tr>
<td>TAF</td>
<td>Terminal Aerodrome Forecasts</td>
</tr>
<tr>
<td>TAS</td>
<td>Traffic Advisory System</td>
</tr>
<tr>
<td>TAS</td>
<td>True Air Speed</td>
</tr>
<tr>
<td>TAWS</td>
<td>Terrain Awareness and Warning System</td>
</tr>
<tr>
<td>TCAD</td>
<td>Traffic and Collision Alert Device</td>
</tr>
<tr>
<td>TCAS</td>
<td>Traffic Alert Collision Avoidance System</td>
</tr>
<tr>
<td>Abbreviation</td>
<td>Meaning</td>
</tr>
<tr>
<td>--------------</td>
<td>---------</td>
</tr>
<tr>
<td>TFR</td>
<td>Temporary Flight Restrictions</td>
</tr>
<tr>
<td>UTC</td>
<td>Universal Coordinated Time (Zulu)(Greenwich Mean Time)</td>
</tr>
<tr>
<td>VFR</td>
<td>Visual Flight Rules</td>
</tr>
<tr>
<td>Victor Airways</td>
<td>Aerial highways that connect electronic navigation aids (more traffic). Victor Airways are 8 nautical miles wide (4 NM either side of the centerline)</td>
</tr>
<tr>
<td>VOR</td>
<td>VHF Omnidirectional Radio Beacon</td>
</tr>
<tr>
<td>WX</td>
<td>Weather</td>
</tr>
</tbody>
</table>
14 Software License

Avidyne Corporation ("Avidyne") is willing to license this software, pilot's guide, and related materials (the "Software") only on the condition that you agree to all the terms of this agreement. Please read these terms carefully.

Trademarks
Avidyne, the Avidyne logo, Entegra, the Entegra logo, FlightMax, and the FlightMax logo are trademarks of Avidyne Corporation. Other brands or products are the trademarks or registered trademarks of their respective holders and should be treated as such.

License and Certain Restrictions
You may use the Software on the FlightMax or Entegra on which it was delivered. You may not copy the Software for any purpose. You may not transfer the Software or any rights under this Agreement to another party without this Agreement. The other party must agree to accept the terms of this Agreement. The Software contains trade secrets. You may not decompile, reverse engineer, disassemble, or otherwise reduce the Software to human-readable form. You may not modify, adapt, translate, rent, sublicense, assign, lease, loan, resell for proof, distribute, or network the Software, disk or related materials or create derivative works based upon the software or any part thereof. Title, ownership rights, and intellectual property rights in and to the Software belongs to Avidyne and its licensors. The Software is protected by the copyright laws of the United States and by international copyright treaties. Title, ownership rights and intellectual property rights in and to the content accessed through the Software is the property of Avidyne, and where applicable, to the licensor content owners and may be protected by applicable copyright or other law. This Agreement gives you no rights to such content.

Government Licensee
If you are acquiring the Software on behalf of any unit or agency of the United States Government, this provision applies. The Government acknowledges Avidyne's representation that the Software and its documentation were developed at private expense and no part of them is in the public domain. The Government acknowledges Avidyne's representation that the Software is “Restricted Computer Software” as that term is defined in Clause 52.227-19 of the Federal Acquisition Regulations (FAR) and is “Commercial Computer Software” as that term is defined in Subpart 227.401 of the Department of Defense Federal Acquisition Regulation Supplement (DFARS). The Government agrees that: If the Software is supplied to the Department of Defense (DoD), the Software is classified as “Commercial Computer Software” and the Government is acquiring only “restricted rights” in the Software and its documentation as that term is defined in Clause 52.227-7013(c)(1) of the DFARS, and If the Software is supplied to any unit or agency of the United States Government other than DoD, the Government's rights in the Software and its documentation will be as defined in Clause 52.227-19(c)(2) of the FAR.
Restricted Rights Legend
Use, duplication, or disclosure by the Government is subject to restrictions as set forth in subparagraph (c)(1)(ii) of the Rights in Technical Data and Computer Software clause at DFARS 52.227-7013, and when applicable subparagraphs (a) through (d) of the Commercial Computer-Restricted rights clause at FAR 52.227-19, and in similar clauses in the NASA FAR Supplement.
- Avidyne Corporation, 55 Old Bedford Road, Lincoln, MA 01773.

Export Law Assurances
You acknowledge and agree that the Software is subject to restrictions and controls imposed by the United States Export Administration Act and Arms Export Control Act (the “Acts”) and the regulations thereunder. You agree and certify that neither the Software nor any direct product thereof is being or will be acquired, shipped, transferred or exported, directly or indirectly, into any country prohibited by the Acts and the regulations thereunder or will be used for any purpose prohibited by the same.

Miscellaneous
This Agreement will be governed by the internal laws of the State of Massachusetts. If any provision of this Agreement is held to be unenforceable, that provision will be removed and the remaining provisions will remain in full force. This Agreement is the complete and exclusive statement of the agreement between us which supersedes any other communications between us in relation to the subject matter of this Agreement. This Software contains dated information. Use of the Software is based on your understanding that this Software may not include all the information or the most current information relevant to your particular situation. If you have any questions concerning this Agreement, you may contact Avidyne by writing to Avidyne Corporation, 55 Old Bedford Road, Lincoln, MA 01773. You acknowledge that, in providing you with the Software, Avidyne and its licensors rely upon you to read this Agreement, understand it, and agree to be bound by its terms and not those contained in your purchase order.
If you do not agree to the terms of this license, Avidyne is unwilling to license the product to you. In such event, you may not use or copy the product, and you should promptly contact Avidyne for instructions on return of the unused product(s) for a refund.

Copyright
© 2005 Avidyne Corporation. All rights reserved. Reproduction of this publication or any portion thereof by any means without the express written consent of Avidyne Corporation is prohibited. For further information contact Avidyne Corporation, 55 Old Bedford Road, Lincoln, MA 01773, 781-402-7400. Information in this document is subject to change without notice. Avidyne reserves the right to change or improve their products and to make changes in the content of this material without obligation to notify any person or organization of such changes or improvements.